These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36113653)

  • 1. Novel monolithic catalysts for VOCs removal: A review on preparation, carrier and energy supply.
    Fu K; Su Y; Zheng Y; Han R; Liu Q
    Chemosphere; 2022 Dec; 308(Pt 2):136256. PubMed ID: 36113653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ambient volatile organic compounds pollution in China.
    Zhang X; Xue Z; Li H; Yan L; Yang Y; Wang Y; Duan J; Li L; Chai F; Cheng M; Zhang W
    J Environ Sci (China); 2017 May; 55():69-75. PubMed ID: 28477835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Temperature Catalytic Ozonation of Multitype VOCs over Zeolite-Supported Catalysts.
    Shao J; Zhai Y; Zhang L; Xiang L; Lin F
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China.
    Wu W; Zhao B; Wang S; Hao J
    J Environ Sci (China); 2017 Mar; 53():224-237. PubMed ID: 28372747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of gaseous volatile organic compounds via vacuum ultraviolet photodegradation: Review and prospect.
    Sun X; Li C; Yu B; Wang J; Wang W
    J Environ Sci (China); 2023 Mar; 125():427-442. PubMed ID: 36375926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-energy production of a monolithic catalyst with MnCu-synergetic enhancement for catalytic oxidation of volatile organic compounds.
    Zhu J; Cheng Y; Wang Z; Zhang J; Yue Y; Qian G
    J Environ Manage; 2023 Jun; 336():117688. PubMed ID: 36907063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources.
    He C; Cheng J; Zhang X; Douthwaite M; Pattisson S; Hao Z
    Chem Rev; 2019 Apr; 119(7):4471-4568. PubMed ID: 30811934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromatographic method to analyze products from photo-oxidation of anthropogenic and biogenic mixtures of volatile organic compounds in smog chambers.
    Pindado Jiménez O; Pérez Pastor RM; Vivanco MG; Santiago Aladro M
    Talanta; 2013 Mar; 106():20-8. PubMed ID: 23598091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation.
    Wu M; Huang H; Leung DYC
    J Environ Manage; 2022 Apr; 307():114559. PubMed ID: 35066195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the optimum volatile organic compounds control strategy considering the formation of ozone and secondary organic aerosol in Seoul, Korea.
    Shin HJ; Kim JC; Lee SJ; Kim YP
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1468-81. PubMed ID: 22886781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics and Reactivity of VOCs in a Typical Industrial City in Summer].
    Qin T; Li LM; Wang XW; Yang W; Wang XL; Xu B; Geng CM
    Huan Jing Ke Xue; 2022 Aug; 43(8):3934-3943. PubMed ID: 35971692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances of Chlorinated Volatile Organic Compounds' Oxidation Catalyzed by Multiple Catalysts: Reasonable Adjustment of Acidity and Redox Properties.
    Su Y; Fu K; Pang C; Zheng Y; Song C; Ji N; Ma D; Lu X; Liu C; Han R; Liu Q
    Environ Sci Technol; 2022 Jul; 56(14):9854-9871. PubMed ID: 35635373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.
    Kolar P; Kastner JR
    Chemosphere; 2010 Feb; 78(9):1110-5. PubMed ID: 20064651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on Catalytic Oxidation of VOCs at Ambient Temperature.
    Zhao R; Wang H; Zhao D; Liu R; Liu S; Fu J; Zhang Y; Ding H
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and health risk assessment of volatile organic compounds (VOCs) in restaurants in Shanghai.
    Huang X; Han D; Cheng J; Chen X; Zhou Y; Liao H; Dong W; Yuan C
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):490-499. PubMed ID: 31797266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential.
    Xiong Y; Zhou J; Xing Z; Du K
    Environ Res; 2020 Dec; 191():110217. PubMed ID: 32971083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor.
    Karuppiah J; Reddy EL; Reddy PM; Ramaraju B; Karvembu R; Subrahmanyam Ch
    J Hazard Mater; 2012 Oct; 237-238():283-9. PubMed ID: 22975253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removing volatile organic compounds in cooking fume by nano-sized TiO
    Li YH; Cheng SW; Yuan CS; Lai TF; Hung CH
    Chemosphere; 2018 Oct; 208():808-817. PubMed ID: 29906755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning and theoretical analysis release the non-linear relationship among ozone, secondary organic aerosol and volatile organic compounds.
    Wang F; Zhang Z; Wang G; Wang Z; Li M; Liang W; Gao J; Wang W; Chen D; Feng Y; Shi G
    J Environ Sci (China); 2022 Apr; 114():75-84. PubMed ID: 35459516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review.
    Gao W; Tang X; Yi H; Jiang S; Yu Q; Xie X; Zhuang R
    J Environ Sci (China); 2023 Mar; 125():112-134. PubMed ID: 36375898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.