These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36114276)

  • 1. Genic distribution modelling predicts adaptation of the bank vole to climate change.
    Escalante MA; Marková S; Searle JB; Kotlík P
    Commun Biol; 2022 Sep; 5(1):981. PubMed ID: 36114276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic admixture drives climate adaptation in the bank vole.
    Horníková M; Lanier HC; Marková S; Escalante MA; Searle JB; Kotlík P
    Commun Biol; 2024 Jul; 7(1):863. PubMed ID: 39009753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local adaptation and future climate vulnerability in a wild rodent.
    Marková S; Lanier HC; Escalante MA; da Cruz MOR; Horníková M; Konczal M; Weider LJ; Searle JB; Kotlík P
    Nat Commun; 2023 Nov; 14(1):7840. PubMed ID: 38030627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole.
    Kotlík P; Marková S; Vojtek L; Stratil A; Slechta V; Hyršl P; Searle JB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe.
    Filipi K; Marková S; Searle JB; Kotlík P
    Mol Phylogenet Evol; 2015 Jan; 82 Pt A():245-57. PubMed ID: 25450101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range margin populations show high climate adaptation lags in European trees.
    Fréjaville T; Vizcaíno-Palomar N; Fady B; Kremer A; Benito Garzón M
    Glob Chang Biol; 2020 Feb; 26(2):484-495. PubMed ID: 31642570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using connectivity to identify climatic drivers of local adaptation.
    Macdonald SL; Llewelyn J; Phillips BL
    Ecol Lett; 2018 Feb; 21(2):207-216. PubMed ID: 29194918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local climatic adaptation in a widespread microorganism.
    Leducq JB; Charron G; Samani P; Dubé AK; Sylvester K; James B; Almeida P; Sampaio JP; Hittinger CT; Bell G; Landry CR
    Proc Biol Sci; 2014 Feb; 281(1777):20132472. PubMed ID: 24403328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenological plasticity will not help all species adapt to climate change.
    Duputié A; Rutschmann A; Ronce O; Chuine I
    Glob Chang Biol; 2015 Aug; 21(8):3062-73. PubMed ID: 25752508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dealing with disjunct populations of vascular plants: implications for assessing the effect of climate change.
    Varaldo L; Guerrina M; Dagnino D; Minuto L; Casazza G
    Oecologia; 2023 Feb; 201(2):421-434. PubMed ID: 36738314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Dispersal Evolution and Local Adaptation Affect the Range Dynamics of Species Lagging Behind Climate Change.
    Block S; Levine JM
    Am Nat; 2021 Jun; 197(6):E173-E187. PubMed ID: 33989146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling.
    Dalmaris E; Ramalho CE; Poot P; Veneklaas EJ; Byrne M
    Ann Bot; 2015 Nov; 116(6):941-52. PubMed ID: 25851142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus).
    Imholt C; Reil D; Eccard JA; Jacob D; Hempelmann N; Jacob J
    Pest Manag Sci; 2015 Feb; 71(2):166-72. PubMed ID: 24889216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal effects of climate change on the geographical distribution and flowering phenology of hummingbird-pollinated plants.
    Correa-Lima APA; Varassin IG; Barve N; Zwiener VP
    Ann Bot; 2019 Oct; 124(3):389-398. PubMed ID: 31310652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean.
    Foo SA; Byrne M
    Adv Mar Biol; 2016; 74():69-116. PubMed ID: 27573050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of intraspecific variation on forecasts of species range shifts under climate change.
    Song WH; Li JJ
    Sci Total Environ; 2023 Jan; 857(Pt 2):159513. PubMed ID: 36257416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Perspective on Ecological Prediction Reveals Limits to Climate Adaptation in a Temperate Tree Species.
    Blumstein M; Richardson A; Weston D; Zhang J; Muchero W; Hopkins R
    Curr Biol; 2020 Apr; 30(8):1447-1453.e4. PubMed ID: 32220321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus).
    Deffontaine V; Libois R; Kotlík P; Sommer R; Nieberding C; Paradis E; Searle JB; Michaux JR
    Mol Ecol; 2005 May; 14(6):1727-39. PubMed ID: 15836645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics.
    Haredasht SA; Taylor CJ; Maes P; Verstraeten WW; Clement J; Barrios M; Lagrou K; Van Ranst M; Coppin P; Berckmans D; Aerts JM
    Zoonoses Public Health; 2013 Nov; 60(7):461-77. PubMed ID: 23176630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change threatens the distribution of major woody species and ecosystem services provision in southern Africa.
    Kapuka A; Dobor L; Hlásny T
    Sci Total Environ; 2022 Dec; 850():158006. PubMed ID: 35970468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.