These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 36114308)

  • 1. Molecular basis for host responses to Xanthomonas infection.
    Cardoso JLS; Souza AA; Vieira MLC
    Planta; 2022 Sep; 256(4):84. PubMed ID: 36114308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions.
    Ryan RP; Vorhölter FJ; Potnis N; Jones JB; Van Sluys MA; Bogdanove AJ; Dow JM
    Nat Rev Microbiol; 2011 May; 9(5):344-55. PubMed ID: 21478901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the biocontrol of Xanthomonas spp.
    Marin VR; Ferrarezi JH; Vieira G; Sass DC
    World J Microbiol Biotechnol; 2019 Apr; 35(5):72. PubMed ID: 31011844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas.
    Jacques MA; Arlat M; Boulanger A; Boureau T; Carrère S; Cesbron S; Chen NW; Cociancich S; Darrasse A; Denancé N; Fischer-Le Saux M; Gagnevin L; Koebnik R; Lauber E; Noël LD; Pieretti I; Portier P; Pruvost O; Rieux A; Robène I; Royer M; Szurek B; Verdier V; Vernière C
    Annu Rev Phytopathol; 2016 Aug; 54():163-87. PubMed ID: 27296145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops.
    Vicente JG; Holub EB
    Mol Plant Pathol; 2013 Jan; 14(1):2-18. PubMed ID: 23051837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Novel Lytic Phages for Biological Control of Phytopathogenic
    Domingo-Calap ML; Bernabéu-Gimeno M; M Aure C; Marco-Noales E; Domingo-Calap P
    Microbiol Spectr; 2022 Dec; 10(6):e0296022. PubMed ID: 36326506
    [No Abstract]   [Full Text] [Related]  

  • 7. Diffusible signal factor (DSF)-mediated quorum sensing modulates expression of diverse traits in Xanthomonas citri and responses of citrus plants to promote disease.
    Li L; Li J; Zhang Y; Wang N
    BMC Genomics; 2019 Jan; 20(1):55. PubMed ID: 30654743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture.
    Nakayinga R; Makumi A; Tumuhaise V; Tinzaara W
    BMC Microbiol; 2021 Oct; 21(1):291. PubMed ID: 34696726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas.
    An SQ; Potnis N; Dow M; Vorhölter FJ; He YQ; Becker A; Teper D; Li Y; Wang N; Bleris L; Tang JL
    FEMS Microbiol Rev; 2020 Jan; 44(1):1-32. PubMed ID: 31578554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetic arms race between plant and Xanthomonas: lessons learned from TALE biology.
    Xue J; Lu Z; Liu W; Wang S; Lu D; Wang X; He X
    Sci China Life Sci; 2021 Jan; 64(1):51-65. PubMed ID: 32661897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.
    Ma L; Wang Q; Yuan M; Zou T; Yin P; Wang S
    Biochem Biophys Res Commun; 2018 Feb; 496(2):608-613. PubMed ID: 29331375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops.
    Deng Y; Ning Y; Yang DL; Zhai K; Wang GL; He Z
    Mol Plant; 2020 Oct; 13(10):1402-1419. PubMed ID: 32979566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Navigating complexity to breed disease-resistant crops.
    Nelson R; Wiesner-Hanks T; Wisser R; Balint-Kurti P
    Nat Rev Genet; 2018 Jan; 19(1):21-33. PubMed ID: 29109524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa.
    Ainembabazi JH; Tripathi L; Rusike J; Abdoulaye T; Manyong V
    PLoS One; 2015; 10(9):e0138998. PubMed ID: 26414379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The translucens group of Xanthomonas translucens: Complicated and important pathogens causing bacterial leaf streak on cereals.
    Sapkota S; Mergoum M; Liu Z
    Mol Plant Pathol; 2020 Mar; 21(3):291-302. PubMed ID: 31967397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.
    Bae C; Han SW; Song YR; Kim BY; Lee HJ; Lee JM; Yeam I; Heu S; Oh CS
    Theor Appl Genet; 2015 Jul; 128(7):1219-29. PubMed ID: 25917599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation and secretion of Xanthomonas virulence factors.
    Büttner D; Bonas U
    FEMS Microbiol Rev; 2010 Mar; 34(2):107-33. PubMed ID: 19925633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogen-informed breeding for crop disease resistance.
    Li Q; Wang B; Yu J; Dou D
    J Integr Plant Biol; 2021 Feb; 63(2):305-311. PubMed ID: 33095498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xanthomonas diversity, virulence and plant-pathogen interactions.
    Timilsina S; Potnis N; Newberry EA; Liyanapathiranage P; Iruegas-Bocardo F; White FF; Goss EM; Jones JB
    Nat Rev Microbiol; 2020 Aug; 18(8):415-427. PubMed ID: 32346148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.