These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36114603)

  • 1. Three-dimensional representation of triple spectral line imaging data as an option for noncontact skin diagnostics.
    Ošina I; Spigulis J; Kuzmina I; Dambite L; Berzina A
    J Biomed Opt; 2022 Sep; 27(9):. PubMed ID: 36114603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin chromophore mapping by smartphone RGB camera under spectral band and spectral line illumination.
    Kuzmina I; Oshina I; Dambite L; Lukinsone V; Maslobojeva A; Berzina A; Spigulis J
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35191236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination.
    Spigulis J; Oshina I; Berzina A; Bykov A
    J Biomed Opt; 2017 Sep; 22(9):91508. PubMed ID: 28253387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snapshot RGB mapping of skin melanin and hemoglobin.
    Spigulis J; Oshina I
    J Biomed Opt; 2015 May; 20(5):50503. PubMed ID: 25992844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards noncontact skin melanoma selection by multispectral imaging analysis.
    Kuzmina I; Diebele I; Jakovels D; Spigulis J; Valeine L; Kapostinsh J; Berzina A
    J Biomed Opt; 2011 Jun; 16(6):060502. PubMed ID: 21721796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New closed-form approximation for skin chromophore mapping.
    Välisuo P; Kaartinen I; Tuchin V; Alander J
    J Biomed Opt; 2011 Apr; 16(4):046012. PubMed ID: 21529081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles.
    Kikuchi K; Masuda Y; Hirao T
    Skin Res Technol; 2013 Nov; 19(4):499-507. PubMed ID: 23750856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical evaluation of melanomas and common nevi by spectral imaging.
    Diebele I; Kuzmina I; Lihachev A; Kapostinsh J; Derjabo A; Valeine L; Spigulis J
    Biomed Opt Express; 2012 Mar; 3(3):467-72. PubMed ID: 22435095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-D mapping of skin chromophores in the spectral range 500 - 700 nm.
    Jakovels D; Spigulis J
    J Biophotonics; 2010 Mar; 3(3):125-9. PubMed ID: 19894217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral Imaging for Skin Diseases Assessment-State of the Art and Perspectives.
    Ilișanu MA; Moldoveanu F; Moldoveanu A
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of smartphone suitability for mapping of skin chromophores.
    Kuzmina I; Lacis M; Spigulis J; Berzina A; Valeine L
    J Biomed Opt; 2015 Sep; 20(9):090503. PubMed ID: 26405818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging.
    Lihachev A; Lihacova I; Plorina EV; Lange M; Derjabo A; Spigulis J
    Biomed Opt Express; 2018 Apr; 9(4):1852-1858. PubMed ID: 29675324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handheld multispectral imager for quantitative skin assessment in low-resource settings.
    Belcastro L; Jonasson H; Strömberg T; Saager RB
    J Biomed Opt; 2020 Aug; 25(8):1-12. PubMed ID: 32755076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of In Vivo Reflectance Confocal Microscopy in the Analysis of Melanocytic Lesions.
    Serban ED; Farnetani F; Pellacani G; Constantin MM
    Acta Dermatovenerol Croat; 2018 Apr; 26(1):64-67. PubMed ID: 29782304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-dependent hemoglobin analysis from multispectral transillumination images.
    D'Alessandro B; Dhawan AP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2568-71. PubMed ID: 20639166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring.
    Uthoff R; Song B; Maarouf M; Shi V; Liang R
    J Biomed Opt; 2020 Jun; 25(6):1-21. PubMed ID: 32578406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated altitude exposure assessment by hyperspectral imaging.
    Calin MA; Macovei A; Miclos S; Parasca SV; Savastru R; Hristea R
    J Biomed Opt; 2017 May; 22(5):56012. PubMed ID: 28564692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the Distribution of Melanin Concentration in Different Fitzpatrick Skin Types Using Hyperspectral Imaging Technique.
    Calin MA; Manea D; Savastru R; Parasca SV
    Photochem Photobiol; 2023; 99(3):1020-1027. PubMed ID: 36135823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperspectral imaging: a new approach to the diagnosis of hemorrhagic shock.
    Cancio LC; Batchinsky AI; Mansfield JR; Panasyuk S; Hetz K; Martini D; Jordan BS; Tracey B; Freeman JE
    J Trauma; 2006 May; 60(5):1087-95. PubMed ID: 16688075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.