These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36114765)

  • 1. Radiomics based on magnetic resonance imaging for preoperative prediction of lymph node metastasis in head and neck cancer: Machine learning study.
    Wang Y; Yu T; Yang Z; Zhou Y; Kang Z; Wang Y; Huang Z
    Head Neck; 2022 Dec; 44(12):2786-2795. PubMed ID: 36114765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lymph node status in patients with early-stage cervical cancer based on radiomic features of magnetic resonance imaging (MRI) images.
    Liu S; Zhou Y; Wang C; Shen J; Zheng Y
    BMC Med Imaging; 2023 Aug; 23(1):101. PubMed ID: 37528338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma.
    Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J
    BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of diffusion-weighted imaging in predicting cervical lymph node metastasis in head and neck malignancies.
    Zhou Y; Yu T; Rui X; Jin T; Huang Z; Huang Z
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2021 Jan; 131(1):122-129.e2. PubMed ID: 32807714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preoperative prediction model of lymph node metastasis in the inguinal and femoral region based on radiomics and artificial intelligence.
    Zhou H; Zhao Q; Xie Q; Peng Y; Chen M; Huang Z; Lin Z; Yao T
    Int J Gynecol Cancer; 2024 Sep; 34(9):1437-1444. PubMed ID: 39089728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma.
    Yuan Y; Ren J; Tao X
    Eur Radiol; 2021 Sep; 31(9):6429-6437. PubMed ID: 33569617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer.
    Wu Q; Wang S; Chen X; Wang Y; Dong L; Liu Z; Tian J; Wang M
    Radiother Oncol; 2019 Sep; 138():141-148. PubMed ID: 31252296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer.
    Chen Y; Wang L; Dong X; Luo R; Ge Y; Liu H; Zhang Y; Wang D
    J Digit Imaging; 2023 Aug; 36(4):1323-1331. PubMed ID: 36973631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymph Node Metastasis in Early-Stage Cervical Cancer.
    Xiao M; Ma F; Li Y; Li Y; Li M; Zhang G; Qiang J
    J Magn Reson Imaging; 2020 Sep; 52(3):885-896. PubMed ID: 32096586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the diagnostic performance of apparent diffusion coefficient (ADC) values on diffusion-weighted magnetic resonance imaging (DWI) in differentiating between benign and metastatic lymph nodes in cases of cholangiocarcinoma.
    Promsorn J; Soontrapa W; Somsap K; Chamadol N; Limpawattana P; Harisinghani M
    Abdom Radiol (NY); 2019 Feb; 44(2):473-481. PubMed ID: 30151713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics model of diffusion-weighted whole-body imaging with background signal suppression (DWIBS) for predicting axillary lymph node status in breast cancer.
    Haraguchi T; Kobayashi Y; Hirahara D; Kobayashi T; Takaya E; Nagai MT; Tomita H; Okamoto J; Kanemaki Y; Tsugawa K
    J Xray Sci Technol; 2023; 31(3):627-640. PubMed ID: 37038802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Axillary Lymph Node Metastasis in Early-stage Triple-Negative Breast Cancer Using Multiparametric and Radiomic Features of Breast MRI.
    Song SE; Woo OH; Cho Y; Cho KR; Park KH; Kim JW
    Acad Radiol; 2023 Sep; 30 Suppl 2():S25-S37. PubMed ID: 37331865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of 3-Tesla diffusion-weighted magnetic resonance imaging for distinction of reactive and metastatic lymph nodes in head-and-neck carcinoma.
    Vijayalakshmi K; Raghuram PH; Saravanan K; Krithika CL; Kannan A
    J Cancer Res Ther; 2020; 16(3):587-593. PubMed ID: 32719272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound-based radiomics machine learning models for diagnosing cervical lymph node metastasis in patients with non-small cell lung cancer: a multicentre study.
    Deng Z; Liu X; Wu R; Yan H; Gou L; Hu W; Wan J; Song C; Chen J; Ma D; Zhou H; Tian D
    BMC Cancer; 2024 Apr; 24(1):536. PubMed ID: 38678211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer.
    Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H
    JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic Value of Diffusion Weighted Magnetic Resonance Imaging in Evaluation of Metastatic Neck Lymph Nodes in Head and Neck Cancer: A Sample of Iranian Patient.
    Alamolhoda F; Faeghi F; Bakhshandeh M; Ahmadi A; Sanei Taheri M; Aabbasi S
    Asian Pac J Cancer Prev; 2019 Jun; 20(6):1789-1795. PubMed ID: 31244301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymph node metastasis in head and neck squamous carcinoma: Efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis.
    Liang L; Luo X; Lian Z; Chen W; Zhang B; Dong Y; Liang C; Zhang S
    Eur J Radiol; 2017 May; 90():159-165. PubMed ID: 28583628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance imaging (MRI) radiomics of papillary thyroid cancer (PTC): a comparison of predictive performance of multiple classifiers modeling to identify cervical lymph node metastases before surgery.
    Qin H; Que Q; Lin P; Li X; Wang XR; He Y; Chen JQ; Yang H
    Radiol Med; 2021 Oct; 126(10):1312-1327. PubMed ID: 34236572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of DWI and T2-weighted MRI volumetry in the evaluation of lymph node metastasis and lymphovascular invasion of stage IB-IIA cervical cancer.
    Wang Y; Chen X; Pu H; Yuan Y; Li S; Chen G; Liu Y; Li H
    Clin Radiol; 2022 Mar; 77(3):224-230. PubMed ID: 35000761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.