These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3611477)

  • 1. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation.
    Chen G; Russell JB; Sniffen CJ
    J Dairy Sci; 1987 Jun; 70(6):1211-9. PubMed ID: 3611477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical note: effect of removal of microbial cells by centrifugation on peptide and alpha-amino nitrogen concentrations in ruminal fluid.
    Ives SE; Titgemeyer EC; Nagaraja TG
    J Dairy Sci; 2002 Nov; 85(11):3059-61. PubMed ID: 12487472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of quantifying peptide release on ruminal protein degradation determined using the inhibitor in vitro system.
    Colombini S; Broderick GA; Clayton MK
    J Dairy Sci; 2011 Apr; 94(4):1967-77. PubMed ID: 21426988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of protein and utilization of the hydrolytic products by a predominant ruminal bacterium, Prevotella ruminicola B1(4).
    Griswold KE; Mackie RI
    J Dairy Sci; 1997 Jan; 80(1):167-75. PubMed ID: 9120087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of variation in rates of in vitro ruminal protein degradation.
    Broderick GA; Udén P; Murphy ML; Lapins A
    J Dairy Sci; 2004 May; 87(5):1345-59. PubMed ID: 15290982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity, protein solubility, and feeding frequency.
    Chen G; Sniffen CJ; Russell JB
    J Dairy Sci; 1987 May; 70(5):983-92. PubMed ID: 3597939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen.
    Atasoglu C; Valdés C; Newbold CJ; Wallace RJ
    Br J Nutr; 1999 Apr; 81(4):307-14. PubMed ID: 10999018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows.
    Broderick GA; Reynal SM
    J Dairy Sci; 2009 Jun; 92(6):2822-34. PubMed ID: 19448016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of time of feeding a protein meal on ruminal fermentation and forestomach digestion in dairy cows.
    Robinson PH; Gill M; Kennelly JJ
    J Dairy Sci; 1997 Jul; 80(7):1366-73. PubMed ID: 9241598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition.
    Chiquette J; Allison MJ; Rasmussen MA
    J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasum of dairy cows.
    Shabi Z; Arieli A; Bruckental I; Aharoni Y; Zamwel S; Bor A; Tagari H
    J Dairy Sci; 1998 Jul; 81(7):1991-2000. PubMed ID: 9710769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of zinc and sodium monensin on ruminal degradation of lysine-HCl and liquid 2-hydroxy-4-methylthiobutanoic acid.
    Bateman HG; Williams CC; Gantt DT; Chung YH; Beem AE; Stanley CC; Goodier GE; Hoyt PG; Ward JD; Bunting LD
    J Dairy Sci; 2004 Aug; 87(8):2571-7. PubMed ID: 15328281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH.
    Calsamiglia S; Cardozo PW; Ferret A; Bach A
    J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and nutrient utilization in dairy does.
    Yu CW; Chen YS; Cheng YH; Cheng YS; Yang CM; Chang CT
    J Dairy Sci; 2010 Feb; 93(2):701-10. PubMed ID: 20105541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the ruminal metabolism of nitrogen from 15N-labeled alfalfa preserved as hay or as silage.
    Hristov AN; Huhtanen P; Rode LM; Acharya SN; McAllister TA
    J Dairy Sci; 2001 Dec; 84(12):2738-50. PubMed ID: 11814030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Undegradable protein supplementation to early-lactation dairy cows in grazing conditions.
    Schor A; Gagliostro GA
    J Dairy Sci; 2001 Jul; 84(7):1597-606. PubMed ID: 11467808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inoculum preparation and dietary energy on microbial numbers and rumen protein degradation activity.
    Furchtenicht JE; Broderick GA
    J Dairy Sci; 1987 Jul; 70(7):1404-10. PubMed ID: 3624593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria.
    Callaway TR; Martin SA
    J Dairy Sci; 1997 Jun; 80(6):1126-35. PubMed ID: 9201583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omasal flow of soluble proteins, peptides, and free amino acids in dairy cows fed diets supplemented with proteins of varying ruminal degradabilities.
    Reynal SM; Ipharraguerre IR; Liñeiro M; Brito AF; Broderick GA; Clark JH
    J Dairy Sci; 2007 Apr; 90(4):1887-903. PubMed ID: 17369230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ruminal ammonia-nitrogen concentration on protein degradation in situ.
    Grummer RR; Clark JH; Davis CL; Murphy MR
    J Dairy Sci; 1984 Oct; 67(10):2294-301. PubMed ID: 6501649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.