These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36115027)
1. FACS-assisted CRISPR-Cas9 genome editing of human induced pluripotent stem cells. Caillaud A; Lévêque A; Thédrez A; Girardeau A; Canac R; Bray L; Baudic M; Barc J; Gaborit N; Lamirault G; Gardie B; Idriss S; Rimbert A; Le May C; Cariou B; Si-Tayeb K STAR Protoc; 2022 Dec; 3(4):101680. PubMed ID: 36115027 [TBL] [Abstract][Full Text] [Related]
2. ASSURED-optimized CRISPR protocol for knockout/SNP knockin in hiPSCs. Ludwik KA; Telugu N; Schommer S; Stachelscheid H; Diecke S STAR Protoc; 2023 Sep; 4(3):102406. PubMed ID: 37481731 [TBL] [Abstract][Full Text] [Related]
3. Genome Editing in Human Induced Pluripotent Stem Cells (hiPSCs). Higo S; Hikoso S; Miyagawa S; Sakata Y Methods Mol Biol; 2021; 2320():235-245. PubMed ID: 34302662 [TBL] [Abstract][Full Text] [Related]
4. Protocol for the design, conduct, and evaluation of prime editing in human pluripotent stem cells. Wu Y; Sidharta M; Zhong A; Persily B; Li M; Zhou T STAR Protoc; 2023 Dec; 4(4):102583. PubMed ID: 37738119 [TBL] [Abstract][Full Text] [Related]
5. Optimized protocol for CRISPR knockout of human iPSC-derived macrophages. Navarro-Guerrero E; Baronio R; Tay C; Knight JC; Ebner DV STAR Protoc; 2024 Mar; 5(1):102903. PubMed ID: 38401123 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Li XL; Li GH; Fu J; Fu YW; Zhang L; Chen W; Arakaki C; Zhang JP; Wen W; Zhao M; Chen WV; Botimer GD; Baylink D; Aranda L; Choi H; Bechar R; Talbot P; Sun CK; Cheng T; Zhang XB Nucleic Acids Res; 2018 Nov; 46(19):10195-10215. PubMed ID: 30239926 [TBL] [Abstract][Full Text] [Related]
8. Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9. Yumlu S; Bashir S; Stumm J; Kühn R Methods Mol Biol; 2019; 1961():137-151. PubMed ID: 30912045 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Cas9-mediated induction of large chromosomal inversions in human bronchial epithelial cells. Angelopoulou A; Papaspyropoulos A; Papantonis A; Gorgoulis VG STAR Protoc; 2022 Jun; 3(2):101257. PubMed ID: 35330963 [TBL] [Abstract][Full Text] [Related]
10. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells. Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells. Brandão KO; Grandela C; Yiangou L; Mummery CL; Davis RP Methods Mol Biol; 2022; 2454():531-557. PubMed ID: 33755904 [TBL] [Abstract][Full Text] [Related]
12. Protocol for establishing knockout cell clones by deletion of a large gene fragment using CRISPR-Cas9 with multiple guide RNAs. Saito AC; Higashi T; Chiba H STAR Protoc; 2024 Sep; 5(3):103179. PubMed ID: 38972040 [TBL] [Abstract][Full Text] [Related]
13. Protocol for generating in-frame seamless knockins in Drosophila using the SEED/Harvest technology. Aguilar G; Bauer M; Vigano MA; Guerrero I; Affolter M STAR Protoc; 2024 Sep; 5(3):102932. PubMed ID: 38996063 [TBL] [Abstract][Full Text] [Related]
14. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510 [TBL] [Abstract][Full Text] [Related]
15. Development of an efficient single-cell cloning and expansion strategy for genome edited induced pluripotent stem cells. Bhargava N; Thakur P; Muruganandam TP; Jaitly S; Gupta P; Lohani N; Goswami SG; Saravanakumar V; Bhattacharya SK; Jain S; Ramalingam S Mol Biol Rep; 2022 Aug; 49(8):7887-7898. PubMed ID: 35637316 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation. Dannenmann B; Nasri M; Welte K; Skokowa J Methods Mol Biol; 2020; 2115():471-483. PubMed ID: 32006418 [TBL] [Abstract][Full Text] [Related]
17. CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells. Sharma A; Toepfer CN; Ward T; Wasson L; Agarwal R; Conner DA; Hu JH; Seidman CE Curr Protoc Hum Genet; 2018 Jan; 96():21.11.1-21.11.20. PubMed ID: 29364519 [TBL] [Abstract][Full Text] [Related]
18. One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells. Li M; Hunt JFVS; Bhattacharyya A; Zhao X Methods Mol Biol; 2019; 1942():61-69. PubMed ID: 30900175 [TBL] [Abstract][Full Text] [Related]
19. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. De Masi C; Spitalieri P; Murdocca M; Novelli G; Sangiuolo F Hum Genomics; 2020 Jun; 14(1):25. PubMed ID: 32591003 [TBL] [Abstract][Full Text] [Related]
20. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing. Adkar SS; Wu CL; Willard VP; Dicks A; Ettyreddy A; Steward N; Bhutani N; Gersbach CA; Guilak F Stem Cells; 2019 Jan; 37(1):65-76. PubMed ID: 30378731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]