These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36115173)

  • 1. Determining effective diffusion coefficients of chlorohydrocarbons in natural clays: Unique results from highly resolved controlled release field experiments.
    Parker BL; Cherry JA; Wanner P
    J Contam Hydrol; 2022 Oct; 250():104075. PubMed ID: 36115173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of DNAPL waste in subsurface clayey lenses and layers.
    Ayral-Çınar D; Demond AH
    J Contam Hydrol; 2020 Feb; 229():103579. PubMed ID: 31818434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
    Rivett MO; Dearden RA; Wealthall GP
    J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing aquitard integrity in a complex aquifer - aquitard system contaminated by chlorinated hydrocarbons.
    Filippini M; Parker BL; Dinelli E; Wanner P; Chapman SW; Gargini A
    Water Res; 2020 Mar; 171():115388. PubMed ID: 31877474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.
    Seyedabbasi MA; Newell CJ; Adamson DT; Sale TC
    J Contam Hydrol; 2012 Jun; 134-135():69-81. PubMed ID: 22591740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.
    Goode DJ; Imbrigiotta TE; Lacombe PJ
    J Contam Hydrol; 2014 Dec; 171():1-11. PubMed ID: 25461882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective diffusion coefficients of DNAPL waste components in saturated low permeability soil materials.
    Ayral-Cinar D; Demond AH
    J Contam Hydrol; 2017 Dec; 207():1-7. PubMed ID: 29074266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone.
    Dearden RA; Noy DJ; Lelliott MR; Wilson R; Wealthall GP
    J Contam Hydrol; 2013 Oct; 153():141-55. PubMed ID: 24119249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.
    Rivett MO; Allen-King RM
    J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of alkaline activated sodium persulfate sustained release rod for the removal of dissolved trichloroethylene.
    Liang C; Weng CY
    J Hazard Mater; 2022 Oct; 439():129657. PubMed ID: 35905609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards?
    Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM
    J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept.
    Phenrat T; Kumloet I
    Water Res; 2016 Dec; 107():19-28. PubMed ID: 27788401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation.
    Mumford KG; Martin EJ; Kueper BH
    J Contam Hydrol; 2021 Dec; 243():103892. PubMed ID: 34634516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase flow and transport in fractured clay/sand sequences.
    Reynolds DA; Kueper BH
    J Contam Hydrol; 2001 Sep; 51(1-2):41-62. PubMed ID: 11530926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of DNAPL from the U.S. DOE Savannah River Site.
    Dou W; Omran K; Grimberg SJ; Denham M; Powers SE
    J Contam Hydrol; 2008 Apr; 97(1-2):75-86. PubMed ID: 18295370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field scale DNAPLs transport under nonequilibrium sorption conditions.
    Ahmed AA; Chen D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(3):273-90. PubMed ID: 16484063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.