These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36115226)
61. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Vatansever E; Arslan D; Sarul DS; Kahraman Y; Nofar M Int J Biol Macromol; 2020 Jul; 154():276-290. PubMed ID: 32184137 [TBL] [Abstract][Full Text] [Related]
62. Integration of antimicrobial pectin-based edible coating and active modified atmosphere packaging to preserve the quality and microbial safety of fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante). Sanchís E; Ghidelli C; Sheth CC; Mateos M; Palou L; Pérez-Gago MB J Sci Food Agric; 2017 Jan; 97(1):252-260. PubMed ID: 26997097 [TBL] [Abstract][Full Text] [Related]
64. Development of pullulan/carboxylated cellulose nanocrystal/tea polyphenol bionanocomposite films for active food packaging. Chen F; Chi C Int J Biol Macromol; 2021 Sep; 186():405-413. PubMed ID: 34237374 [TBL] [Abstract][Full Text] [Related]
65. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Arrieta MP; Fortunati E; Dominici F; López J; Kenny JM Carbohydr Polym; 2015 May; 121():265-75. PubMed ID: 25659698 [TBL] [Abstract][Full Text] [Related]
66. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Fortunati E; Puglia D; Luzi F; Santulli C; Kenny JM; Torre L Carbohydr Polym; 2013 Sep; 97(2):825-36. PubMed ID: 23911521 [TBL] [Abstract][Full Text] [Related]
67. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Le Gars M; Bras J; Salmi-Mani H; Ji M; Dragoe D; Faraj H; Domenek S; Belgacem N; Roger P Carbohydr Polym; 2020 Apr; 234():115899. PubMed ID: 32070519 [TBL] [Abstract][Full Text] [Related]
68. Crystallization, structural relaxation and thermal degradation in Poly(L-lactide)/cellulose nanocrystal renewable nanocomposites. Lizundia E; Vilas JL; León LM Carbohydr Polym; 2015 Jun; 123():256-65. PubMed ID: 25843857 [TBL] [Abstract][Full Text] [Related]
69. Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites. Chen J; Yang R; Ou J; Tang C; Xiang M; Wu D; Tang J; Tam KC Carbohydr Polym; 2020 Aug; 242():116399. PubMed ID: 32564863 [TBL] [Abstract][Full Text] [Related]
70. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Oun AA; Rhim JW Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095 [TBL] [Abstract][Full Text] [Related]
71. Cellulose Nanocrystal Reinforced Chitosan Coatings for Improving the Storability of Postharvest Pears Under Both Ambient and Cold Storages. Deng Z; Jung J; Simonsen J; Wang Y; Zhao Y J Food Sci; 2017 Feb; 82(2):453-462. PubMed ID: 28146285 [TBL] [Abstract][Full Text] [Related]
73. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Sukyai P; Anongjanya P; Bunyahwuthakul N; Kongsin K; Harnkarnsujarit N; Sukatta U; Sothornvit R; Chollakup R Food Res Int; 2018 May; 107():528-535. PubMed ID: 29580516 [TBL] [Abstract][Full Text] [Related]
74. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. El Achaby M; Kassab Z; Aboulkas A; Gaillard C; Barakat A Int J Biol Macromol; 2018 Jan; 106():681-691. PubMed ID: 28823511 [TBL] [Abstract][Full Text] [Related]
75. Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. Shahzadi I; Islam M; Saeed H; Shahzadi A; Haider J; Haider A; Imran M; Rathore HA; Ul-Hamid A; Nabgan W; Ikram M Int J Biol Macromol; 2023 Apr; 235():123874. PubMed ID: 36870651 [TBL] [Abstract][Full Text] [Related]
76. Improving the performance of edible food packaging films by using nanocellulose as an additive. Zhang W; Zhang Y; Cao J; Jiang W Int J Biol Macromol; 2021 Jan; 166():288-296. PubMed ID: 33129905 [TBL] [Abstract][Full Text] [Related]
77. Synthesis of methylcellulose/cellulose nano-crystals nanocomposites: Material properties and study of sustained release of ketorolac tromethamine. Orasugh JT; Saha NR; Sarkar G; Rana D; Mishra R; Mondal D; Ghosh SK; Chattopadhyay D Carbohydr Polym; 2018 May; 188():168-180. PubMed ID: 29525153 [TBL] [Abstract][Full Text] [Related]
78. Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid) nanocomposites with silver nanoparticles by spraying method. Yu HY; Yang XY; Lu FF; Chen GY; Yao JM Carbohydr Polym; 2016 Apr; 140():209-19. PubMed ID: 26876846 [TBL] [Abstract][Full Text] [Related]
79. Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. Costa SM; Ferreira DP; Teixeira P; Ballesteros LF; Teixeira JA; Fangueiro R Int J Biol Macromol; 2021 Apr; 177():241-251. PubMed ID: 33631258 [TBL] [Abstract][Full Text] [Related]
80. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals. Kashani Rahimi S; Aeinehvand R; Kim K; Otaigbe JU Biomacromolecules; 2017 Jul; 18(7):2179-2194. PubMed ID: 28616970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]