These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36115407)
1. Environmental application of a cost-effective smartphone-based method for COD analysis: Applicability in the electrochemical treatment of real wastewater. de Castro CM; Olivi P; de Freitas Araújo KC; Barbosa Segundo ID; Dos Santos EV; Martínez-Huitle CA Sci Total Environ; 2023 Jan; 855():158816. PubMed ID: 36115407 [TBL] [Abstract][Full Text] [Related]
2. Decentralized environmental applications of a smartphone-based method for chemical oxygen demand and color analysis. Cardozo JC; Barbosa Segundo ID; Galvão ERVP; da Silva DR; Dos Santos EV; Martínez-Huitle CA Sci Rep; 2023 Jul; 13(1):11082. PubMed ID: 37422460 [TBL] [Abstract][Full Text] [Related]
3. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process. Zolfaghari M; Drogui P; Blais JF Environ Sci Pollut Res Int; 2018 Mar; 25(8):7748-7757. PubMed ID: 29290057 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical treatment of shrimp farming effluent: role of electrocatalytic material. de Menezes FLG; da Silva AJC; Martínez-Huitle CA; Zanta CLPS; Alves JJF; Castro SSL Environ Sci Pollut Res Int; 2017 Mar; 24(7):6061-6070. PubMed ID: 27557970 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical degradation of Mordant Blue 13 azo dye using boron-doped diamond and dimensionally stable anodes: influence of experimental parameters and water matrix. Kenova TA; Kornienko GV; Golubtsova OA; Kornienko VL; Maksimov NG Environ Sci Pollut Res Int; 2018 Oct; 25(30):30425-30440. PubMed ID: 30159847 [TBL] [Abstract][Full Text] [Related]
6. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes. Gargouri B; Gargouri OD; Gargouri B; Trabelsi SK; Abdelhedi R; Bouaziz M Chemosphere; 2014 Dec; 117():309-15. PubMed ID: 25129707 [TBL] [Abstract][Full Text] [Related]
7. Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode. Yang W; Liu G; Chen Y; Miao D; Wei Q; Li H; Ma L; Zhou K; Liu L; Yu Z Chemosphere; 2020 Aug; 252():126499. PubMed ID: 32224356 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical oxidation as a post treatment for biologically tannery wastewater in batch reactor. Le Luu T; Stephane DDF; Minh NH; Canh ND; Thanh BX Water Sci Technol; 2019 Oct; 80(7):1326-1337. PubMed ID: 31850884 [TBL] [Abstract][Full Text] [Related]
9. Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect. Abdelhay A; Jum'h I; Abdulhay E; Al-Kazwini A; Alzubi M Water Sci Technol; 2017 Dec; 76(11-12):3227-3235. PubMed ID: 29236002 [TBL] [Abstract][Full Text] [Related]
10. Phenolic wastewaters depuration by electrochemical oxidation process using Ti/IrO Fajardo AS; Seca HF; Martins RC; Corceiro VN; Vieira JP; Quinta-Ferreira ME; Quinta-Ferreira RM Environ Sci Pollut Res Int; 2017 Mar; 24(8):7521-7533. PubMed ID: 28116623 [TBL] [Abstract][Full Text] [Related]
11. Cost-effective smartphone-based method for low range chemical oxygen demand analysis. Barbosa Segundo ID; Cardozo JC; Castro PS; Gondim AD; Dos Santos EV; Martínez-Huitle CA MethodsX; 2023 Dec; 11():102300. PubMed ID: 37577171 [TBL] [Abstract][Full Text] [Related]
12. Scale-up of electrochemical oxidation system for treatment of produced water generated by Brazilian petrochemical industry. dos Santos EV; Sena SF; da Silva DR; Ferro S; De Battisti A; Martínez-Huitle CA Environ Sci Pollut Res Int; 2014; 21(14):8466-75. PubMed ID: 24687787 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical treatments of coking wastewater and coal gasification wastewater with Ti/Ti Zhi D; Zhang J; Wang J; Luo L; Zhou Y; Zhou Y J Environ Manage; 2020 Jul; 265():110571. PubMed ID: 32421562 [TBL] [Abstract][Full Text] [Related]
14. Application of boron-doped diamond, Ti/IrO Bagastyo AY; Hidayati AS; Herumurti W; Nurhayati E Water Sci Technol; 2021 Mar; 83(6):1357-1368. PubMed ID: 33767042 [TBL] [Abstract][Full Text] [Related]
15. Process Optimization of Electrochemical Treatment of COD and Total Nitrogen Containing Wastewater. Yao J; Mei Y; Jiang J; Xia G; Chen J Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055672 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical oxidation of textile industry wastewater by graphite electrodes. Bhatnagar R; Joshi H; Mall ID; Srivastava VC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):955-66. PubMed ID: 24766597 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical oxidation of wastewater - opportunities and drawbacks. Woisetschläger D; Humpl B; Koncar M; Siebenhofer M Water Sci Technol; 2013; 68(5):1173-9. PubMed ID: 24037171 [TBL] [Abstract][Full Text] [Related]
18. Toward efficient electrocatalytic degradation of iohexol using active anodes: A laser-made versus commercial anodes. Bomfim SA; Dória AR; Gonzaga IMD; Oliveira RVM; Romão LPC; Salazar-Banda GR; Ferreira LFR; Eguiluz KIB Chemosphere; 2022 Jul; 299():134350. PubMed ID: 35331750 [TBL] [Abstract][Full Text] [Related]
19. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes. Moreira FC; Boaventura RA; Brillas E; Vilar VJ Water Res; 2015 May; 75():95-108. PubMed ID: 25765168 [TBL] [Abstract][Full Text] [Related]
20. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater. Ozay Y; Dizge N J Environ Manage; 2022 May; 310():114762. PubMed ID: 35220102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]