These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36115408)

  • 1. Review of influence of critical operation conditions on by-product/intermediate formation during thermal destruction of PFAS in solid/biosolids.
    Zhang J; Gao L; Bergmann D; Bulatovic T; Surapaneni A; Gray S
    Sci Total Environ; 2023 Jan; 854():158796. PubMed ID: 36115408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis-A tool in the wastewater solids handling portfolio, not a silver bullet: Benefits, drawbacks, and future directions.
    McNamara P; Liu Z; Tong Y; Santha H; Moss L; Zitomer D
    Water Environ Res; 2023 May; 95(5):e10863. PubMed ID: 37021664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis processing of PFAS-impacted biosolids, a pilot study.
    Thoma ED; Wright RS; George I; Krause M; Presezzi D; Villa V; Preston W; Deshmukh P; Kauppi P; Zemek PG
    J Air Waste Manag Assoc; 2022 Apr; 72(4):309-318. PubMed ID: 34870569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial and thermal treatment techniques for degradation of PFAS in biosolids: A focus on degradation mechanisms and pathways.
    Kumar R; Dada TK; Whelan A; Cannon P; Sheehan M; Reeves L; Antunes E
    J Hazard Mater; 2023 Jun; 452():131212. PubMed ID: 36934630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration.
    Altarawneh M; Almatarneh MH; Dlugogorski BZ
    Chemosphere; 2022 Jan; 286(Pt 2):131685. PubMed ID: 34388878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burning questions: Current practices and critical gaps in evaluating removal of per- and polyfluoroalkyl substances (PFAS) during pyrolysis treatments of biosolids.
    Wallace JS; Edirisinghe D; Seyedi S; Noteboom H; Blate M; Balci DD; Abu-Orf M; Sharp R; Brown J; Aga DS
    J Hazard Mater Lett; 2023 Nov; 4():. PubMed ID: 37790729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review.
    Winchell LJ; Ross JJ; Wells MJM; Fonoll X; Norton JW; Bell KY
    Water Environ Res; 2021 Jun; 93(6):826-843. PubMed ID: 33190313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis.
    Sørmo E; Castro G; Hubert M; Licul-Kucera V; Quintanilla M; Asimakopoulos AG; Cornelissen G; Arp HPH
    J Hazard Mater; 2023 Jul; 454():131447. PubMed ID: 37121036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of volatile chlorinated and brominated products during low temperature thermal decomposition of the representative PFAS perfluorohexane sulfonate (PFHxS) in the presence of NaCl and NaBr.
    Zhao Y; Koster van Groos PG; Thakur N; Fuller ME; Soto A; Hatzinger PB
    Environ Pollut; 2024 May; 348():123782. PubMed ID: 38484959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review.
    Longendyke GK; Katel S; Wang Y
    Environ Sci Process Impacts; 2022 Feb; 24(2):196-208. PubMed ID: 34985474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of per- and poly-fluoroalkyl treatment in combustion-based thermal waste systems in the United States.
    Weitz K; Kantner D; Kessler A; Key H; Larson J; Bodnar W; Parvathikar S; Davis L; Robey N; Taylor P; De la Cruz F; Tolaymat T; Weber N; Linak W; Krug J; Phelps L
    Sci Total Environ; 2024 Jul; 932():172658. PubMed ID: 38657813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants.
    Schaefer CE; Hooper JL; Strom LE; Abusallout I; Dickenson ERV; Thompson KA; Mohan GR; Drennan D; Wu K; Guelfo JL
    Water Res; 2023 Apr; 233():119724. PubMed ID: 36801573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of microplastics, PFAS, and PPCPs from biosolids via pyrolysis to produce biochar: Feasibility and techno-economic analysis.
    Keller AA; Li W; Floyd Y; Bae J; Clemens KM; Thomas E; Han Z; Adeleye AS
    Sci Total Environ; 2024 Jul; 947():174773. PubMed ID: 39013495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combustion of C
    Krug JD; Lemieux PM; Lee CW; Ryan JV; Kariher PH; Shields EP; Wickersham LC; Denison MK; Davis KA; Swensen DA; Burnette RP; Wendt JOL; Linak WP
    J Air Waste Manag Assoc; 2022 Mar; 72(3):256-270. PubMed ID: 34994684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pilot-Scale Thermal Destruction of Per- and Polyfluoroalkyl Substances in a Legacy Aqueous Film Forming Foam.
    Shields EP; Krug JD; Roberson WR; Jackson SR; Smeltz MG; Allen MR; Preston Burnette R; Nash JT; Virtaranta L; Preston W; Liberatore HK; Ariel Geer Wallace M; Ryan JV; Kariher PH; Lemieux PM; Linak WP
    ACS ES T Eng; 2023 Jun; 3(9):1308-1317. PubMed ID: 38989445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled high and low-frequency ultrasound remediation of PFAS-contaminated soils.
    Kewalramani JA; Wang B; Marsh RW; Meegoda JN; Rodriguez Freire L
    Ultrason Sonochem; 2022 Aug; 88():106063. PubMed ID: 35738199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils - To mobilize or to immobilize or to degrade?
    Bolan N; Sarkar B; Yan Y; Li Q; Wijesekara H; Kannan K; Tsang DCW; Schauerte M; Bosch J; Noll H; Ok YS; Scheckel K; Kumpiene J; Gobindlal K; Kah M; Sperry J; Kirkham MB; Wang H; Tsang YF; Hou D; Rinklebe J
    J Hazard Mater; 2021 Jan; 401():123892. PubMed ID: 33113753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of PFAS-Contaminated Soil and Granular Activated Carbon by Smoldering Combustion.
    Duchesne AL; Brown JK; Patch DJ; Major D; Weber KP; Gerhard JI
    Environ Sci Technol; 2020 Oct; 54(19):12631-12640. PubMed ID: 32822535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first quantitative investigation of compounds generated from PFAS, PFAS-containing aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes.
    Yao B; Sun R; Alinezhad A; Kubátová A; Simcik MF; Guan X; Xiao F
    J Hazard Mater; 2022 Aug; 436():129313. PubMed ID: 35739805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrolysis and gasification at water resource recovery facilities: Status of the industry.
    Winchell LJ; Ross JJ; Brose DA; Pluth TB; Fonoll X; Norton JW; Bell KY
    Water Environ Res; 2022 Mar; 94(3):e10701. PubMed ID: 35298843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.