These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36115509)

  • 1. Extracellular expression of agarolytic enzymes in Clostridium sp. strain and its application for butanol production from Gelidium amansii.
    Xie W; Zhang Z; Bai S; Wu YR
    Bioresour Technol; 2022 Nov; 363():127962. PubMed ID: 36115509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elimination of carbon catabolite repression through gene-modifying a solventogenic Clostridium sp. strain WK to enhance butanol production from the galactose-rich red seaweed.
    Zhang F; Zhang K; Xian XY; Chen HQ; Chen XW; Zhang Z; Wu YR
    Sci Total Environ; 2023 Feb; 861():160559. PubMed ID: 36574546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii through a distinct acidolytic pretreatment.
    Zhang K; Hong Y; Chen C; Wu YR
    Bioresour Technol; 2021 Dec; 342():125939. PubMed ID: 34555752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biobutanol production from sulfuric acid-pretreated red algal biomass by a newly isolated Clostridium sp. strain WK.
    Hong Y; Chen C; Wu YR
    Biotechnol Appl Biochem; 2020 Sep; 67(5):738-743. PubMed ID: 31532860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for production of butanol and butyl-butyrate through lipase-catalyzed esterification.
    Xin F; Basu A; Yang KL; He J
    Bioresour Technol; 2016 Feb; 202():214-9. PubMed ID: 26710347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of butyric acid on butanol formation by Clostridium pasteurianum.
    Regestein L; Doerr EW; Staaden A; Rehmann L
    Bioresour Technol; 2015 Nov; 196():153-9. PubMed ID: 26233327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.
    Lee KM; Choi O; Kim KY; Woo HM; Kim Y; Han SO; Sang BI; Um Y
    Biotechnol Lett; 2015 Sep; 37(9):1837-44. PubMed ID: 26026964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice.
    Zhang J; Yu L; Xu M; Yang ST; Yan Q; Lin M; Tang IC
    Appl Microbiol Biotechnol; 2017 May; 101(10):4327-4337. PubMed ID: 28238080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation.
    Sabra W; Groeger C; Sharma PN; Zeng AP
    Appl Microbiol Biotechnol; 2014 May; 98(9):4267-76. PubMed ID: 24584460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agarase cocktail from agar polysaccharide utilization loci converts homogenized Gelidium amansii into neoagarooligosaccharides.
    Song T; Wang X; Wu M; Zhao K; Wang X; Chu Y; Lin J
    Food Chem; 2021 Aug; 352():128685. PubMed ID: 33691998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia.
    Lee SH; Yun EJ; Kim J; Lee SJ; Um Y; Kim KH
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8255-71. PubMed ID: 27531513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3.
    Xin F; Wu YR; He J
    Appl Environ Microbiol; 2014 Aug; 80(15):4771-8. PubMed ID: 24858088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum.
    Bao T; Feng J; Jiang W; Fu H; Wang J; Yang ST
    World J Microbiol Biotechnol; 2020 Aug; 36(9):138. PubMed ID: 32794091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced biobutanol production with high yield from crude glycerol by acetone uncoupled Clostridium sp. strain CT7.
    Xin F; Chen T; Jiang Y; Lu J; Dong W; Zhang W; Ma J; Zhang M; Jiang M
    Bioresour Technol; 2017 Nov; 244(Pt 1):575-581. PubMed ID: 28803108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct conversion of xylan to butanol by a wild-type Clostridium species strain G117.
    Yan Y; Basu A; Li T; He J
    Biotechnol Bioeng; 2016 Aug; 113(8):1702-10. PubMed ID: 26803924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly selective butanol production by manipulating electron flow via cathodic electro-fermentation.
    Zhang Y; Li J; Yong YC; Fang Z; Yan H; Li J; Meng J
    Bioresour Technol; 2023 Apr; 374():128770. PubMed ID: 36822560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic modeling of butyric acid effects on butanol fermentation by Clostridium saccharoperbutylacetonicum.
    Zhou Q; Liu Y; Yuan W
    N Biotechnol; 2020 Mar; 55():118-126. PubMed ID: 31626983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidoreduction potential controlling for increasing the fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production.
    Xia M; Wang D; Xia Y; Shi H; Tian Z; Zheng Y; Wang M
    Microb Cell Fact; 2022 Jun; 21(1):130. PubMed ID: 35761287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
    Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mutants with high butanol production from a strain of solventogenic Clostridium isolated from olive black-water].
    Cueto PH; Giulietti AM; dos Santos C; Méndez BS
    Rev Argent Microbiol; 1990; 22(2):57-61. PubMed ID: 2287712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.