These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36115518)

  • 41. Krüppel homolog 1 regulates photoperiodic reproductive plasticity in the cabbage beetle Colaphellus bowringi.
    Guo S; Wu QW; Tian Z; Zhu L; King-Jones K; Zhu F; Wang XP; Liu W
    Insect Biochem Mol Biol; 2021 Jul; 134():103582. PubMed ID: 33905880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Association between circadian clock genes and diapause incidence in Drosophila triauraria.
    Yamada H; Yamamoto MT
    PLoS One; 2011; 6(12):e27493. PubMed ID: 22164210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deciphering time measurement: the role of circadian 'clock' genes and formal experimentation in insect photoperiodism.
    Saunders DS; Bertossa RC
    J Insect Physiol; 2011 May; 57(5):557-66. PubMed ID: 21295039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations.
    Hidalgo S; Chiu JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Jul; 210(4):585-599. PubMed ID: 37584703
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris.
    Ikeno T; Numata H; Goto SG
    Biochem Biophys Res Commun; 2011 Jul; 410(3):394-7. PubMed ID: 21669185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of protein kinase C in relation to the embryonic diapause process in the silkworm, Bombyx mori.
    Gu SH; Chen CH; Hsieh HY; Lin PL
    J Insect Physiol; 2020; 121():104010. PubMed ID: 31917243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoperiodic induction of diapause requires regulated transcription of timeless in the larval brain of Chymomyza costata.
    Stehlík J; Závodská R; Shimada K; Sauman I; Kostál V
    J Biol Rhythms; 2008 Apr; 23(2):129-39. PubMed ID: 18375862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression analyses of casein kinase 2alpha and casein kinase 2beta in the silkmoth, Bombyx mori.
    Iwai S; Thi Dieu Trang L; Sehadova H; Takeda M
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jan; 149(1):38-46. PubMed ID: 17888702
    [TBL] [Abstract][Full Text] [Related]  

  • 49. BmINR and BmAC6 genes involve in diapause regulation via the insulin/IGF signaling pathway in the silkworm (Bombyx mori).
    Fan B; Chen Y; Yasen A; Wu S; Wang M; Zhu J; Huang J; Tang S; Shen X
    Gene; 2023 Sep; 881():147626. PubMed ID: 37423399
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly.
    Iiams SE; Lugena AB; Zhang Y; Hayden AN; Merlin C
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25214-25221. PubMed ID: 31767753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bombyxin/Akt signaling in relation to the embryonic diapause process of the silkworm, Bombyx mori.
    Gu SH; Lin PL; Hsieh HY
    J Insect Physiol; 2019 Jul; 116():32-40. PubMed ID: 31022386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. m
    Chen YH; Jiang T; Yasen A; Fan BY; Zhu J; Wang MX; Qian P; Shen XJ
    Mol Biol Rep; 2023 Jun; 50(6):5295-5306. PubMed ID: 37148414
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inheritance of photoperiodic control of larval diapause in the Asian corn borer Ostrinia furnacalis (Guenée).
    Xiao L; He HM; Zhong PS; Fu S; Chen C; Xue FS
    Bull Entomol Res; 2015 Jun; 105(3):326-34. PubMed ID: 25779483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. YTHDF3 Is Involved in the Diapause Process of Bivoltine
    Chen Y; Fan B; Yasen A; Zhu J; Wang M; Shen X
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009021
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuropeptidergic regulation of insect diapause by the circadian clock.
    Helfrich-Förster C
    Curr Opin Insect Sci; 2024 Jun; 63():101198. PubMed ID: 38588944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photoperiodic plasticity in circadian clock neurons in insects.
    Shiga S
    Front Physiol; 2013; 4():69. PubMed ID: 23986711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoperiodic regulation of diapause in linden bugs: are period and Clock genes involved?
    Syrová Z; Dolezel D; Saumann I; Hodková M
    Cell Mol Life Sci; 2003 Nov; 60(11):2510-5. PubMed ID: 14625693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insect circadian rhythms and photoperiodism.
    Saunders DS
    Invert Neurosci; 1997; 3(2-3):155-64. PubMed ID: 9783440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution of PERIOD-immunoreactive neurons and temporal change of the immunoreactivity under long-day and short-day conditions in the larval brain of the flesh fly Sarcophaga similis.
    Yamamoto M; Shiga S; Goto SG
    Chronobiol Int; 2017; 34(6):819-825. PubMed ID: 28414547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori.
    Qiu JF; Cui WZ; Zhang Q; Dai TM; Liu K; Li JL; Wang YJ; Sima YH; Xu SQ
    Insect Sci; 2023 Feb; 30(1):31-46. PubMed ID: 35446483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.