These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 36115683)
1. Role of intratumoral and peritumoral CT radiomics for the prediction of EGFR gene mutation in primary lung cancer. Yamazaki M; Yagi T; Tominaga M; Minato K; Ishikawa H Br J Radiol; 2022 Dec; 95(1140):20220374. PubMed ID: 36115683 [TBL] [Abstract][Full Text] [Related]
2. Computed Tomography-derived intratumoral and peritumoral radiomics in predicting EGFR mutation in lung adenocarcinoma. Shang Y; Chen W; Li G; Huang Y; Wang Y; Kui X; Li M; Zheng H; Zhao W; Liu J Radiol Med; 2023 Dec; 128(12):1483-1496. PubMed ID: 37749461 [TBL] [Abstract][Full Text] [Related]
3. Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling. Jia TY; Xiong JF; Li XY; Yu W; Xu ZY; Cai XW; Ma JC; Ren YC; Larsson R; Zhang J; Zhao J; Fu XL Eur Radiol; 2019 Sep; 29(9):4742-4750. PubMed ID: 30778717 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the combination of intratumoral and peritumoral radiomic signatures for predicting epidermal growth factor receptor mutation in lung adenocarcinoma. Kawazoe Y; Shiinoki T; Fujimoto K; Yuasa Y; Hirano T; Matsunaga K; Tanaka H J Appl Clin Med Phys; 2023 Jun; 24(6):e13980. PubMed ID: 37002910 [TBL] [Abstract][Full Text] [Related]
5. Computed Tomography-Based Radiomics Signature: A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule. Yang X; Dong X; Wang J; Li W; Gu Z; Gao D; Zhong N; Guan Y Oncologist; 2019 Nov; 24(11):e1156-e1164. PubMed ID: 30936378 [TBL] [Abstract][Full Text] [Related]
6. CT radiomics-based prediction of anaplastic lymphoma kinase and epidermal growth factor receptor mutations in lung adenocarcinoma. Choe J; Lee SM; Kim W; Do KH; Kim S; Choi S; Seo JB Eur J Radiol; 2021 Jun; 139():109710. PubMed ID: 33862316 [TBL] [Abstract][Full Text] [Related]
7. Accurate prediction of epidermal growth factor receptor mutation status in early-stage lung adenocarcinoma, using radiomics and clinical features. Zhu H; Song Y; Huang Z; Zhang L; Chen Y; Tao G; She Y; Sun X; Yu H Asia Pac J Clin Oncol; 2022 Dec; 18(6):586-594. PubMed ID: 35098682 [TBL] [Abstract][Full Text] [Related]
8. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901 [TBL] [Abstract][Full Text] [Related]
9. Prognostic analysis and risk stratification of lung adenocarcinoma undergoing EGFR-TKI therapy with time-serial CT-based radiomics signature. Zhang X; Lu B; Yang X; Lan D; Lin S; Zhou Z; Li K; Deng D; Peng P; Zeng Z; Long L Eur Radiol; 2023 Feb; 33(2):825-835. PubMed ID: 36166088 [TBL] [Abstract][Full Text] [Related]
10. Predicting EGFR mutation status in lung adenocarcinoma presenting as ground-glass opacity: utilizing radiomics model in clinical translation. Cheng B; Deng H; Zhao Y; Xiong J; Liang P; Li C; Liang H; Shi J; Li J; Xiong S; Lai T; Chen Z; Wu J; Qian T; Huan W; Ng MTA; He J; Liang W Eur Radiol; 2022 Sep; 32(9):5869-5879. PubMed ID: 35348863 [TBL] [Abstract][Full Text] [Related]
11. Value of multi-center Zuo Y; Liu L; Chang C; Yan H; Wang L; Sun D; Ruan M; Lei B; Xia X; Xie W; Song S; Huang G Med Phys; 2024 Jul; 51(7):4872-4887. PubMed ID: 38285641 [TBL] [Abstract][Full Text] [Related]
12. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167 [TBL] [Abstract][Full Text] [Related]
13. Habitat radiomics and deep learning fusion nomogram to predict EGFR mutation status in stage I non-small cell lung cancer: a multicenter study. Wu J; Meng H; Zhou L; Wang M; Jin S; Ji H; Liu B; Jin P; Du C Sci Rep; 2024 Jul; 14(1):15877. PubMed ID: 38982267 [TBL] [Abstract][Full Text] [Related]
14. [Application of radiomics captured from CT to predict the EGFR mutation status and TKIs therapeutic sensitivity of advanced lung adenocarcinoma]. Yang CS; Chen WD; Gong GZ; Li ZJ; Qiu QT; Yin Y Zhonghua Zhong Liu Za Zhi; 2019 Apr; 41(4):282-287. PubMed ID: 31014053 [No Abstract] [Full Text] [Related]
15. Combination of Li S; Li Y; Zhao M; Wang P; Xin J Korean J Radiol; 2022 Sep; 23(9):921-930. PubMed ID: 36047542 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma. Lu J; Ji X; Wang L; Jiang Y; Liu X; Ma Z; Ning Y; Dong J; Peng H; Sun F; Guo Z; Ji Y; Xing J; Lu Y; Lu D Dis Markers; 2022; 2022():2056837. PubMed ID: 35578691 [TBL] [Abstract][Full Text] [Related]
17. Intratumoral and peritumoral CT-based radiomics strategy reveals distinct subtypes of non-small-cell lung cancer. Tang X; Huang H; Du P; Wang L; Yin H; Xu X J Cancer Res Clin Oncol; 2022 Sep; 148(9):2247-2260. PubMed ID: 35430688 [TBL] [Abstract][Full Text] [Related]
18. Using Multi-phase CT Radiomics Features to Predict EGFR Mutation Status in Lung Adenocarcinoma Patients. Zhang G; Man Q; Shang L; Zhang J; Cao Y; Li S; Qian R; Ren J; Pu H; Zhou J; Zhang Z; Kong W Acad Radiol; 2024 Jun; 31(6):2591-2600. PubMed ID: 38290884 [TBL] [Abstract][Full Text] [Related]
19. Distinguishing EGFR mutation molecular subtypes based on MRI radiomics features of lung adenocarcinoma brain metastases. Xu J; Yang Y; Gao Z; Song T; Ma Y; Yu X; Shi C Clin Neurol Neurosurg; 2024 May; 240():108258. PubMed ID: 38552362 [TBL] [Abstract][Full Text] [Related]
20. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas. Das SK; Fang KW; Xu L; Li B; Zhang X; Yang HF Sci Rep; 2021 May; 11(1):10829. PubMed ID: 34031529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]