These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36115938)

  • 1. AbdomenNet: deep neural network for abdominal organ segmentation in epidemiologic imaging studies.
    Rickmann AM; Senapati J; Kovalenko O; Peters A; Bamberg F; Wachinger C
    BMC Med Imaging; 2022 Sep; 22(1):168. PubMed ID: 36115938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies.
    Kart T; Fischer M; Küstner T; Hepp T; Bamberg F; Winzeck S; Glocker B; Rueckert D; Gatidis S
    Invest Radiol; 2021 Jun; 56(6):401-408. PubMed ID: 33930003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging.
    Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P
    Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated multiorgan segmentation in abdominal magnetic resonance imaging with deep neural networks.
    Chen Y; Ruan D; Xiao J; Wang L; Sun B; Saouaf R; Yang W; Li D; Fan Z
    Med Phys; 2020 Oct; 47(10):4971-4982. PubMed ID: 32748401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural network for automated segmentation of the liver and its vessels on non-contrast T1 vibe Dixon acquisitions.
    Zbinden L; Catucci D; Suter Y; Berzigotti A; Ebner L; Christe A; Obmann VC; Sznitman R; Huber AT
    Sci Rep; 2022 Dec; 12(1):22059. PubMed ID: 36543852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-to-binary network (MTBNet) for automated multi-organ segmentation on multi-sequence abdominal MRI images.
    Zhao X; Huang M; Li L; Qi XS; Tan S
    Phys Med Biol; 2020 Aug; 65(16):165013. PubMed ID: 32428898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FatSegNet: A fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI.
    Estrada S; Lu R; Conjeti S; Orozco-Ruiz X; Panos-Willuhn J; Breteler MMB; Reuter M
    Magn Reson Med; 2020 Apr; 83(4):1471-1483. PubMed ID: 31631409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete abdomen and pelvis segmentation using U-net variant architecture.
    Weston AD; Korfiatis P; Philbrick KA; Conte GM; Kostandy P; Sakinis T; Zeinoddini A; Boonrod A; Moynagh M; Takahashi N; Erickson BJ
    Med Phys; 2020 Nov; 47(11):5609-5618. PubMed ID: 32740931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI.
    Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C
    Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated olfactory bulb segmentation on high resolutional T2-weighted MRI.
    Estrada S; Lu R; Diers K; Zeng W; Ehses P; Stöcker T; Breteler MMB; Reuter M
    Neuroimage; 2021 Nov; 242():118464. PubMed ID: 34389442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.
    Winther H; Hundt C; Ringe KI; Wacker FK; Schmidt B; Jürgens J; Haimerl M; Beyer LP; Stroszczynski C; Wiggermann P; Verloh N
    Rofo; 2021 Mar; 193(3):305-314. PubMed ID: 32882724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust and efficient abdominal CT segmentation using shape constrained multi-scale attention network.
    Tong N; Xu Y; Zhang J; Gou S; Li M
    Phys Med; 2023 Jun; 110():102595. PubMed ID: 37178624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Splenomegaly Segmentation by Learning from Heterogeneous Multi-Source Labels.
    Tang Y; Huo Y; Xiong Y; Moon H; Assad A; Moyo TK; Savona MR; Abramson R; Landman BA
    Proc SPIE Int Soc Opt Eng; 2019 Feb; 10949():. PubMed ID: 31762532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studies.
    Kart T; Fischer M; Winzeck S; Glocker B; Bai W; Bülow R; Emmel C; Friedrich L; Kauczor HU; Keil T; Kröncke T; Mayer P; Niendorf T; Peters A; Pischon T; Schaarschmidt BM; Schmidt B; Schulze MB; Umutle L; Völzke H; Küstner T; Bamberg F; Schölkopf B; Rueckert D; Gatidis S
    Sci Rep; 2022 Nov; 12(1):18733. PubMed ID: 36333523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of automatic liver volumetry performance using different types of magnetic resonance images.
    Saunders SL; Clark JM; Rudser K; Chauhan A; Ryder JR; Bolan PJ
    Magn Reson Imaging; 2022 Sep; 91():16-23. PubMed ID: 35537665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning for the prediction of type 2 diabetes mellitus from neck-to-knee Dixon MRI in the UK biobank.
    Wachinger C; Wolf TN; Pölsterl S
    Heliyon; 2023 Nov; 9(11):e22239. PubMed ID: 38034698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.