These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36116007)

  • 21. Multiscale modeling of nucleosome dynamics.
    Sharma S; Ding F; Dokholyan NV
    Biophys J; 2007 Mar; 92(5):1457-70. PubMed ID: 17142268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
    Arya G; Schlick T
    J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
    Luque A; Ozer G; Schlick T
    Biophys J; 2016 Jun; 110(11):2309-2319. PubMed ID: 27276249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
    Kepper N; Foethke D; Stehr R; Wedemann G; Rippe K
    Biophys J; 2008 Oct; 95(8):3692-705. PubMed ID: 18212006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model.
    Arya G; Schlick T
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16236-41. PubMed ID: 17060627
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible and dynamic nucleosome fiber in living mammalian cells.
    Nozaki T; Kaizu K; Pack CG; Tamura S; Tani T; Hihara S; Nagai T; Takahashi K; Maeshima K
    Nucleus; 2013; 4(5):349-56. PubMed ID: 23945462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Depletion effects massively change chromatin properties and influence genome folding.
    Diesinger PM; Heermann DW
    Biophys J; 2009 Oct; 97(8):2146-53. PubMed ID: 19843447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brownian dynamics simulations on CPU and GPU with BD_BOX.
    Długosz M; Zieliński P; Trylska J
    J Comput Chem; 2011 Sep; 32(12):2734-44. PubMed ID: 21638295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of chromatin folding by conformational variations of nucleosome linker DNA.
    Buckwalter JM; Norouzi D; Harutyunyan A; Zhurkin VB; Grigoryev SA
    Nucleic Acids Res; 2017 Sep; 45(16):9372-9387. PubMed ID: 28934465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome modeling: From chromatin fibers to genes.
    Portillo-Ledesma S; Li Z; Schlick T
    Curr Opin Struct Biol; 2023 Feb; 78():102506. PubMed ID: 36577295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational modeling of the chromatin fiber.
    Langowski J; Heermann DW
    Semin Cell Dev Biol; 2007 Oct; 18(5):659-67. PubMed ID: 17936653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo.
    Fraser RM; Allan J; Simmen MW
    J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements.
    Bascom GD; Sanbonmatsu KY; Schlick T
    J Phys Chem B; 2016 Aug; 120(33):8642-53. PubMed ID: 27218881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways.
    Bowerman S; Wereszczynski J; Luger K
    Elife; 2021 Mar; 10():. PubMed ID: 33650488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linker DNA Length is a Key to Tri-nucleosome Folding.
    Kenzaki H; Takada S
    J Mol Biol; 2021 Mar; 433(6):166792. PubMed ID: 33383034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1CPN: A coarse-grained multi-scale model of chromatin.
    Lequieu J; Córdoba A; Moller J; de Pablo JJ
    J Chem Phys; 2019 Jun; 150(21):215102. PubMed ID: 31176328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations.
    Chang L; Takada S
    Sci Rep; 2016 Oct; 6():34441. PubMed ID: 27698366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.