These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36116075)

  • 1. Microfluidic system for in vitro epithelial folding and calcium waves induction.
    Brun-Cosme-Bruny M; Pernet L; Blonski S; Zaremba D; Fraboulet S; Dolega ME
    STAR Protoc; 2022 Dec; 3(4):101683. PubMed ID: 36116075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direction of epithelial folding defines impact of mechanical forces on epithelial state.
    Blonski S; Aureille J; Badawi S; Zaremba D; Pernet L; Grichine A; Fraboulet S; Korczyk PM; Recho P; Guilluy C; Dolega ME
    Dev Cell; 2021 Dec; 56(23):3222-3234.e6. PubMed ID: 34875225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to develop a microfluidic human corneal barrier-on-a-chip to evaluate the corneal epithelial wound repair process.
    Yu Z; Hao R; Chen X; Ma L; Zhang Y; Yang H
    STAR Protoc; 2023 Mar; 4(1):102122. PubMed ID: 36861830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to perform dynamic microfluidic single-cell cultivation of C. glutamicum.
    Blöbaum L; Täuber S; Grünberger A
    STAR Protoc; 2023 Sep; 4(3):102436. PubMed ID: 37543944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for high-throughput single-cell patterning using a reusable ultrathin metal microstencil.
    Tian Q; Xing K; Liu Y; Wang Q; Sun H; Sun YN; Zhang S
    STAR Protoc; 2023 Mar; 4(1):102115. PubMed ID: 36853712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol of living cell separation using the microfluidic dielectrophoresis integrated chip.
    Koba K; Yarimizu K; Fujiyoshi S; Oshiro K; Wakizaka Y; Takano M; Maruyama F
    STAR Protoc; 2022 Sep; 3(3):101527. PubMed ID: 35779257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium measurements in enzymatically dissociated or mechanically microdissected mouse primary skeletal muscle fibers.
    Youhanna S; Bruton J; Jardemark K; Westerblad H; Lauschke VM
    STAR Protoc; 2023 Apr; 4(2):102260. PubMed ID: 37126446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic separation of axonal and somal compartments of neural progenitor cells differentiated in a 3D matrix.
    Lotlikar MS; Tarantino MB; Jorfi M; Kovacs DM; Tanzi RE; Bhattacharyya R
    STAR Protoc; 2022 Mar; 3(1):101028. PubMed ID: 35059649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing circulating tumor cells using affinity-based microfluidic capture and AFM-based biomechanics.
    Deliorman M; Glia A; Qasaimeh MA
    STAR Protoc; 2022 Jun; 3(2):101433. PubMed ID: 35664257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for electrotaxis of large epithelial cell sheets.
    Zhang Y; Lee RM; Zhu Z; Sun Y; Zhu K; Xu Z; Lin F; Pan T; Losert W; Zhao M
    STAR Protoc; 2023 May; 4(2):102288. PubMed ID: 37149857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of growth and nutrient consumption of bacterial and fungal cultures in microfluidic microhabitat models.
    Arellano-Caicedo C; Beech JP; Bengtsson M; Ohlsson P; Hammer EC
    STAR Protoc; 2024 Mar; 5(1):102784. PubMed ID: 38103191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protocol to execute a lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria.
    Fande S; Srikanth S; U S J; Amreen K; Dubey SK; Javed A; Goel S
    STAR Protoc; 2023 May; 4(2):102327. PubMed ID: 37243603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D biomimetic environment enabling ex utero trophoblast invasion and co-culture of embryos and somatic cells.
    Govindasamy N; Long H; Ranga A; Trappmann B; Bedzhov I
    STAR Protoc; 2023 Sep; 4(3):102456. PubMed ID: 37515766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for quantitative analysis of pulsatile contractions and cell extrusion in epithelial tissues of larval zebrafish.
    Atieh Y; Ruiz OE; Eisenhoffer GT
    STAR Protoc; 2021 Jun; 2(2):100600. PubMed ID: 34169293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air-liquid organotypic assays to investigate cellular crosstalk in the tumor microenvironment of cancer cells.
    Cid-Diaz T; Lodeiro AC; Duran A; Moscat J; Diaz-Meco MT
    STAR Protoc; 2022 Sep; 3(3):101635. PubMed ID: 36035805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for ex vivo culture of patient-derived tumor fragments.
    Roelofsen LM; Voabil P; de Bruijn M; Herzig P; Zippelius A; Schumacher TN; Thommen DS
    STAR Protoc; 2023 May; 4(2):102282. PubMed ID: 37149855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a microfluidic device for studying the combinatorial effect of physical and chemical cues on cell migration.
    Saxena N; Jadhav S; Sen S
    STAR Protoc; 2021 Mar; 2(1):100310. PubMed ID: 33554144
    [No Abstract]   [Full Text] [Related]  

  • 20. Bending toward differentiation.
    Tomba C; Roux A
    Dev Cell; 2021 Dec; 56(23):3176-3177. PubMed ID: 34875221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.