These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36116125)

  • 1. Chemo-Mechanical Energy Harvesters with Enhanced Intrinsic Electrochemical Capacitance in Carbon Nanotube Yarns.
    Oh S; Kim KJ; Goh B; Park CL; Lee GD; Shin S; Lim S; Kim ES; Yoon KR; Choi C; Kim H; Suh D; Choi J; Kim SH
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203767. PubMed ID: 36116125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. More Powerful Twistron Carbon Nanotube Yarn Mechanical Energy Harvesters.
    Wang Z; Mun TJ; Machado FM; Moon JH; Fang S; Aliev AE; Zhang M; Cai W; Mu J; Hyeon JS; Park JW; Conlin P; Cho K; Gao E; Wan G; Huynh C; Zakhidov AA; Kim SJ; Baughman RH
    Adv Mater; 2022 Jul; 34(27):e2201826. PubMed ID: 35475584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harvesting electrical energy from carbon nanotube yarn twist.
    Kim SH; Haines CS; Li N; Kim KJ; Mun TJ; Choi C; Di J; Oh YJ; Oviedo JP; Bykova J; Fang S; Jiang N; Liu Z; Wang R; Kumar P; Qiao R; Priya S; Cho K; Kim M; Lucas MS; Drummy LF; Maruyama B; Lee DY; Lepró X; Gao E; Albarq D; Ovalle-Robles R; Kim SJ; Baughman RH
    Science; 2017 Aug; 357(6353):773-778. PubMed ID: 28839068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environment-Adaptable Rotational Energy Harvesters Based on Nylon-core Coiled Carbon Nanotube Yarns.
    Mun TJ; Moon JH; Park JW; Baughman RH; Kim SJ
    Small Methods; 2023 Oct; 7(10):e2300526. PubMed ID: 37317005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns.
    Kim KJ; Hyeon JS; Kim H; Mun TJ; Haines CS; Li N; Baughman RH; Kim SJ
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13533-13537. PubMed ID: 30924629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced energy harvester performance by a tension annealed carbon nanotube yarn at extreme temperatures.
    Hu X; Bao X; Wang J; Zhou X; Hu H; Wang L; Rajput S; Zhang Z; Yuan N; Cheng G; Ding J
    Nanoscale; 2022 Nov; 14(43):16185-16192. PubMed ID: 36278850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn.
    Kim H; Park JW; Hyeon JS; Sim HJ; Jang Y; Shim Y; Huynh C; Baughman RH; Kim SJ
    Biosens Bioelectron; 2020 Sep; 164():112318. PubMed ID: 32479343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omnidirectional Energy Harvesting Fleeces.
    Park CL; Goh B; Kim SH; Choi J
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36688-36697. PubMed ID: 37427804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance.
    Son W; Chun S; Lee JM; Jeon G; Sim HJ; Kim HW; Cho SB; Lee D; Park J; Jeon J; Suh D; Choi C
    ACS Nano; 2022 Feb; 16(2):2661-2671. PubMed ID: 35072453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Powered Coiled Carbon-Nanotube Yarn Sensor for Gastric Electronics.
    Jang Y; Kim SM; Kim KJ; Sim HJ; Kim BJ; Park JW; Baughman RH; Ruhparwar A; Kim SJ
    ACS Sens; 2019 Nov; 4(11):2893-2899. PubMed ID: 31525897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies.
    Hu X; Bao X; Zhang M; Fang S; Liu K; Wang J; Liu R; Kim SH; Baughman RH; Ding J
    Adv Mater; 2023 Dec; 35(49):e2303035. PubMed ID: 37209369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Hydro-Actuation and Capacitance of Electrochemically Inner-Bundle-Activated Carbon Nanotube Yarns.
    Son W; Lee JM; Chun S; Yu S; Noh JH; Kim HW; Cho SB; Kim SJ; Choi C
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13484-13494. PubMed ID: 36855828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems.
    Jang Y; Kim SM; Spinks GM; Kim SJ
    Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Sheets/Elastomer Bilayer Harvesting Electrode with Biaxially Generated Electrical Energy.
    Oh S; Kim HJ; Lee S; Kim KJ; Kim SH
    Polymers (Basel); 2024 Aug; 16(17):. PubMed ID: 39274111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Electrochemical Swelling of Straight Carbon Nanotube Yarns for High-Performance Linear Actuation.
    Wang Y; Wang X; Zhao Y; Dong L; Zhou T; Yong Z; Di J
    Small; 2024 Nov; 20(48):e2405277. PubMed ID: 39189539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery.
    Son W; Lee JM; Kim SH; Kim HW; Cho SB; Suh D; Chun S; Choi C
    Nano Lett; 2022 Mar; 22(6):2470-2478. PubMed ID: 35254078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.