These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36116244)

  • 1. Laser-induced shock-wave-expanded nanobubbles in spherical geometry.
    Horvat D; Agrež V; Požar T; Starman B; Halilovič M; Petkovšek R
    Ultrason Sonochem; 2022 Sep; 89():106160. PubMed ID: 36116244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation.
    Wen H; Yao Z; Zhong Q; Tian Y; Sun Y; Wang F
    Ultrason Sonochem; 2023 May; 95():106391. PubMed ID: 37003210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced cavitation bubbles and shock waves in water near a concave surface.
    Požar T; Agrež V; Petkovšek R
    Ultrason Sonochem; 2021 May; 73():105456. PubMed ID: 33517094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices.
    Matula TJ; Hilmo PR; Bailey MR
    J Acoust Soc Am; 2005 Jul; 118(1):178-85. PubMed ID: 16119340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: A first proof-of-concept study.
    Pahk KJ
    Ultrason Sonochem; 2021 Sep; 77():105699. PubMed ID: 34371476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microgroove formation in thin copper by laser-induced cavitation bubble shock: numerical and experimental investigation.
    Wang L; Deng Y; Zou Z; Xiao Y; Su G; Guo Z
    Appl Opt; 2022 Mar; 61(8):1841-1850. PubMed ID: 35297872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.
    Lukač N; Jezeršek M
    Lasers Med Sci; 2018 May; 33(4):823-833. PubMed ID: 29327088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing of shock waves induced by optical breakdown in water.
    Sankin GN; Zhou Y; Zhong P
    J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The generation of negative pressure waves for cavitation studies.
    Carnell MT; Gentry TP; Emmony DC
    Ultrasonics; 1998 Feb; 36(1-5):689-93. PubMed ID: 9651598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavitation induced by shock wave focusing in eye-like experimental configurations.
    Požar T; Petkovšek R
    Biomed Opt Express; 2020 Jan; 11(1):432-447. PubMed ID: 32010526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser.
    Fu L; Wang S; Xin J; Wang S; Yao C; Zhang Z; Wang J
    Opt Express; 2018 Oct; 26(22):28560-28575. PubMed ID: 30470031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.
    Kodama T; Tomita Y; Koshiyama K; Blomley MJ
    Ultrasound Med Biol; 2006 Jun; 32(6):905-14. PubMed ID: 16785012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions.
    Brujan EA
    Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of shockwaves with a vapour bubble in boiling histotripsy: The shock scattering effect.
    Pahk KJ; Lee S; Gélat P; de Andrade MO; Saffari N
    Ultrason Sonochem; 2021 Jan; 70():105312. PubMed ID: 32866882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.