These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36116322)

  • 1. DeeProPre: A promoter predictor based on deep learning.
    Ma ZW; Zhao JP; Tian J; Zheng CH
    Comput Biol Chem; 2022 Dec; 101():107770. PubMed ID: 36116322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iPromoter-CLA: Identifying promoters and their strength by deep capsule networks with bidirectional long short-term memory.
    Zhang ZM; Zhao JP; Wei PJ; Zheng CH
    Comput Methods Programs Biomed; 2022 Nov; 226():107087. PubMed ID: 36099675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational identification of eukaryotic promoters based on cascaded deep capsule neural networks.
    Zhu Y; Li F; Xiang D; Akutsu T; Song J; Jia C
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33227813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain protein function prediction based on self-attention mechanism and bidirectional LSTM.
    Liu J; Tang X; Guan X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences.
    Hu S; Ma R; Wang H
    PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SE-BLTCNN: A channel attention adapted deep learning model based on PSSM for membrane protein classification.
    He Y; Wang S
    Comput Biol Chem; 2022 Jun; 98():107680. PubMed ID: 35421797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeePromoter: Robust Promoter Predictor Using Deep Learning.
    Oubounyt M; Louadi Z; Tayara H; Chong KT
    Front Genet; 2019; 10():286. PubMed ID: 31024615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The applications of deep learning algorithms on in silico druggable proteins identification.
    Yu L; Xue L; Liu F; Li Y; Jing R; Luo J
    J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iProm-Zea: A two-layer model to identify plant promoters and their types using convolutional neural network.
    Kim J; Shujaat M; Tayara H
    Genomics; 2022 May; 114(3):110384. PubMed ID: 35533969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network.
    Zhao Z; Woloszynek S; Agbavor F; Mell JC; Sokhansanj BA; Rosen GL
    PLoS Comput Biol; 2021 Sep; 17(9):e1009345. PubMed ID: 34550967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peel learning for pathway-related outcome prediction.
    Li Y; Wang F; Yan M; Cantu Iii E; Yang FN; Rao H; Feng R
    Bioinformatics; 2021 Nov; 37(22):4108-4114. PubMed ID: 34042937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction.
    Min X; Lu F; Li C
    Curr Pharm Des; 2021; 27(15):1847-1855. PubMed ID: 33234095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepCLA: A Hybrid Deep Learning Approach for the Identification of Clathrin.
    Zhang J; Yu J; Lin D; Guo X; He H; Shi S
    J Chem Inf Model; 2021 Jan; 61(1):516-524. PubMed ID: 33347303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepTSS: multi-branch convolutional neural network for transcription start site identification from CAGE data.
    Grigoriadis D; Perdikopanis N; Georgakilas GK; Hatzigeorgiou AG
    BMC Bioinformatics; 2022 Dec; 23(Suppl 2):395. PubMed ID: 36510136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CapsProm: a capsule network for promoter prediction.
    Moraes L; Silva P; Luz E; Moreira G
    Comput Biol Med; 2022 Aug; 147():105627. PubMed ID: 35671653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A successful hybrid deep learning model aiming at promoter identification.
    Wang Y; Peng Q; Mou X; Wang X; Li H; Han T; Sun Z; Wang X
    BMC Bioinformatics; 2022 May; 23(Suppl 1):206. PubMed ID: 35641900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.