These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36116897)
1. Responses of diamondback moth to diverse entomopathogenic fungi collected from non-agricultural habitats - Effects of dose, temperature and starvation. Rizal LM; Furlong MJ; Walter GH Fungal Biol; 2022 Oct; 126(10):648-657. PubMed ID: 36116897 [TBL] [Abstract][Full Text] [Related]
2. You are what you eat: fungal metabolites and host plant affect the susceptibility of diamondback moth to entomopathogenic fungi. Soth S; Glare TR; Hampton JG; Card SD; Brookes JJ; Narciso JO PeerJ; 2022; 10():e14491. PubMed ID: 36570000 [TBL] [Abstract][Full Text] [Related]
3. Isolation, morphological characterization, and screening virulence of Geremew D; Shiberu T; Leta A F1000Res; 2023; 12():827. PubMed ID: 38434644 [TBL] [Abstract][Full Text] [Related]
4. Phenotypic and genotypic characterization of fifty strains of Beauveria spp. (Ascomycota, Cordycipitaceae) fungal entomopathogens from diverse geographic origins against the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Reyes-Haro L; Prince G; Granja-Travez RS; Chandler D Pest Manag Sci; 2024 Oct; 80(10):5064-5077. PubMed ID: 38864555 [TBL] [Abstract][Full Text] [Related]
5. Activity of Metarhizium brunneum and Beauveria bassiana against early developmental stages of the false codling moth Thaumatotibia leucotreta. Mondaca LL; Da-Costa N; Protasov A; Ben-Yehuda S; Peisahovich A; Mendel Z; Ment D J Invertebr Pathol; 2020 Feb; 170():107312. PubMed ID: 31870852 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of endophytic colonization and establishment of entomopathogenic fungi against Geremew D; Shiberu T; Leta A F1000Res; 2024; 13():800. PubMed ID: 39193509 [TBL] [Abstract][Full Text] [Related]
7. [Interaction of Metarhizium anisopliae (Metsch.) Sorok., Beauveria bassiana (Bals.) Vuill. and the parasitoid Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae) with larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)]. dos Santos HJ; Marques EJ; Barros R; Gondim MG Neotrop Entomol; 2006; 35(2):241-5. PubMed ID: 17348136 [TBL] [Abstract][Full Text] [Related]
8. Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Akutse KS; Khamis FM; Ambele FC; Kimemia JW; Ekesi S; Subramanian S J Invertebr Pathol; 2020 Nov; 177():107477. PubMed ID: 33053399 [TBL] [Abstract][Full Text] [Related]
9. Increased tolerance of Beauveria bassiana and Metarhizium anisopliae conidia to high temperature provided by oil-based formulations. Oliveira DGP; Lopes RB; Rezende JM; Delalibera I J Invertebr Pathol; 2018 Jan; 151():151-157. PubMed ID: 29175530 [TBL] [Abstract][Full Text] [Related]
10. In vivo interactions of entomopathogenic fungi, Beauveria spp. and Metarhizium anisopliae with selected opportunistic soil fungi of sugarcane ecosystem. Geetha N; Preseetha M; Hari K; Santhalakshmi G; Bai KS J Environ Biol; 2012 Jul; 33(4):721-7. PubMed ID: 23359998 [TBL] [Abstract][Full Text] [Related]
11. Biological Control of Diamondback Moth-Increased Efficacy with Mixtures of Soth S; Glare TR; Hampton JG; Card SD; Brookes JJ Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336221 [TBL] [Abstract][Full Text] [Related]
12. Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides. Duarte RT; Gonçalves KC; Espinosa DJ; Moreira LF; De Bortoli SA; Humber RA; Polanczyk RA J Econ Entomol; 2016 Apr; 109(2):594-601. PubMed ID: 26850733 [TBL] [Abstract][Full Text] [Related]
13. The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Kikankie CK; Brooke BD; Knols BG; Koekemoer LL; Farenhorst M; Hunt RH; Thomas MB; Coetzee M Malar J; 2010 Mar; 9():71. PubMed ID: 20210990 [TBL] [Abstract][Full Text] [Related]
15. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Bernardo CC; Barreto LP; E Silva CSR; Luz C; Arruda W; Fernandes ÉKK Ticks Tick Borne Dis; 2018 Jul; 9(5):1334-1342. PubMed ID: 29914750 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of Demotispa neivai (Coleoptera: Chrysomelidae) to Beauveria bassiana and Metarhizium anisopliae entomopathogenic fungal isolates. Martínez LC; Plata-Rueda A; Ramírez A; Serrão JE Pest Manag Sci; 2022 Jan; 78(1):126-133. PubMed ID: 34453875 [TBL] [Abstract][Full Text] [Related]
17. Horizontal transmission of Metarhizium anisopliae between Spoladea recurvalis (Lepidoptera: Crambidae) adults and compatibility of the fungus with the attractant phenylacetaldehyde. Opisa S; du Plessis H; Akutse KS; Fiaboe KKM; Ekesi S Microb Pathog; 2019 Jun; 131():197-204. PubMed ID: 30980879 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Dhawan M; Joshi N Braz J Microbiol; 2017; 48(3):522-529. PubMed ID: 28262388 [TBL] [Abstract][Full Text] [Related]
19. Mass Production of Entomopathogenic Fungi, Metarhizium robertsii and Metarhizium pinghaense, for Commercial Application Against Insect Pests. Mathulwe LL; Malan AP; Stokwe NF J Vis Exp; 2022 Mar; (181):. PubMed ID: 35435892 [TBL] [Abstract][Full Text] [Related]
20. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana. Rustiguel CB; Fernández-Bravo M; Guimarães LHS; Quesada-Moraga E Can J Microbiol; 2018 Mar; 64(3):191-200. PubMed ID: 29268028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]