BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36117025)

  • 1. Approaches for bacteriophage genome engineering.
    Mahler M; Costa AR; van Beljouw SPB; Fineran PC; Brouns SJJ
    Trends Biotechnol; 2023 May; 41(5):669-685. PubMed ID: 36117025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
    Kiro R; Shitrit D; Qimron U
    RNA Biol; 2014; 11(1):42-4. PubMed ID: 24457913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [CRISPR/Cas systems in genome engineering of bacteriophages].
    Liang CJ; Meng FM; Ai YC
    Yi Chuan; 2018 May; 40(5):378-389. PubMed ID: 29785946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7.
    Grigonyte AM; Harrison C; MacDonald PR; Montero-Blay A; Tridgett M; Duncan J; Sagona AP; Constantinidou C; Jaramillo A; Millard A
    Viruses; 2020 Feb; 12(2):. PubMed ID: 32050613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems.
    Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P
    J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering.
    Box AM; McGuffie MJ; O'Hara BJ; Seed KD
    J Bacteriol; 2016 Feb; 198(3):578-90. PubMed ID: 26598368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
    Martel B; Moineau S
    Nucleic Acids Res; 2014 Aug; 42(14):9504-13. PubMed ID: 25063295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Editing of Phage Genomes - Recombineering-Assisted SpCas9 Modification of Model Coliphages T7, T5, and T3].
    Isaev A; Andriianov A; Znobishcheva E; Zorin E; Morozova N; Severinov K
    Mol Biol (Mosk); 2022; 56(6):883. PubMed ID: 36475474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conquering CRISPR: how phages overcome bacterial adaptive immunity.
    Malone LM; Birkholz N; Fineran PC
    Curr Opin Biotechnol; 2021 Apr; 68():30-36. PubMed ID: 33113496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of CRISPR-Cas systems using phage-based vectors.
    Fage C; Lemire N; Moineau S
    Curr Opin Biotechnol; 2021 Apr; 68():174-180. PubMed ID: 33360715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.
    Bondy-Denomy J; Pawluk A; Maxwell KL; Davidson AR
    Nature; 2013 Jan; 493(7432):429-32. PubMed ID: 23242138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions.
    Jia HJ; Jia PP; Yin S; Bu LK; Yang G; Pei DS
    Front Microbiol; 2023; 14():1172635. PubMed ID: 37323893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host diversity limits the evolution of parasite local adaptation.
    Morley D; Broniewski JM; Westra ER; Buckling A; van Houte S
    Mol Ecol; 2017 Apr; 26(7):1756-1763. PubMed ID: 27862566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.