These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 361174)

  • 21. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].
    Bondar' IV; Vasil'eva LN; Badakva AM; Miller NV; Zobova LN; Roshchin VIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):101-12. PubMed ID: 25710068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity of nucleus raphe pallidus neurons across the sleep-waking cycle in freely moving cats.
    Trulson ME; Trulson VM
    Brain Res; 1982 Apr; 237(1):232-7. PubMed ID: 7074357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A stepper motor controlled microdrive for recording from unanesthetized animals.
    Barmack NH; Hayes DF
    Physiol Behav; 1970 Jun; 5(6):705-6. PubMed ID: 4942074
    [No Abstract]   [Full Text] [Related]  

  • 25. A novel system for recording from single neurons in unrestrained animals.
    Sherk H; Wilkinson EJ
    J Neurosci Methods; 2008 Aug; 173(2):201-7. PubMed ID: 18619491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tapered tungsten fine-wire microelectrode for chronic single unit recording.
    Rose JD; Weishaar DJ
    Brain Res Bull; 1979; 4(3):435-7. PubMed ID: 487197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A driveable bundle of microwires for collecting single-unit data from freely-moving rats.
    Kubie JL
    Physiol Behav; 1984 Jan; 32(1):115-8. PubMed ID: 6718521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A movable microelectrode array for chronic basal ganglia single-unit electrocorticogram co-recording in freely behaving rats.
    Zheng X; Zeng J; Chen T; Lin Y; Yu L; Li Y; Lin Z; Wu X; Chen F; Kang D; Zhang S
    Neurol Sci; 2014 Sep; 35(9):1429-39. PubMed ID: 24838541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A comparative study of microwire electrode array with built-in and external reference electrodes].
    Zhang LN; DU XX; Zhang YT; Guo X; Hao N; Zhao X; Zhang Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2022 Jan; 38(1):85-90. PubMed ID: 35634676
    [No Abstract]   [Full Text] [Related]  

  • 30. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Reorganization of the synaptic inputs of the sensorimotor cortex to the red nucleus after the destruction of the cerebellar nucleus interpositus in adult cats].
    Sarkisian DS; Manvelian IA
    Neirofiziologiia; 1988; 20(4):564-7. PubMed ID: 3200361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stereotaxic assembly and procedures for simultaneous electrophysiological and MRI study of conscious rat.
    Khubchandani M; Mallick HN; Jagannathan NR; Mohan Kumar V
    Magn Reson Med; 2003 May; 49(5):962-7. PubMed ID: 12704780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The direct activating influence of the lateral hypothalamic preoptic area on the thalamic synchronizing system].
    Suntsova NV; Burikov AA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(2):328-34. PubMed ID: 8726566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Dynamics of unit activity of the gigantocellular tegmental field in the sleep-wakefulness cycle of rats].
    Gvetadze LB; Mandzhevidze ShD; Oniani TN
    Fiziol Zh SSSR Im I M Sechenova; 1988 Jan; 74(1):32-40. PubMed ID: 3356265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MEMS-Actuated Carbon Fiber Microelectrode for Neural Recording.
    Zoll RS; Schindler CB; Massey TL; Drew DS; Maharbiz MM; Pister KSJ
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):234-239. PubMed ID: 30892226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of the neuronal responses to static tilts within the cerebellar fastigial nucleus.
    Ghelarducci B; Pompeiano O; Spyer KM
    Arch Ital Biol; 1974 May; 112(2):126-41. PubMed ID: 4602241
    [No Abstract]   [Full Text] [Related]  

  • 37. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microelectrode drive for long term recording of neurons in freely moving and chaired monkeys.
    Wilson FA; Ma YY; Greenberg PA; Ryou JW; Kim BH
    J Neurosci Methods; 2003 Jul; 127(1):49-61. PubMed ID: 12865148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Characteristics of the neuronal activation of the pontine nuclei proper in the cat in cortico- and cerebellofugal impulse flow].
    Fanardzhian VV; Kosoian OP; Bantikian AO
    Neirofiziologiia; 1988; 20(1):38-48. PubMed ID: 3380210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat.
    Westby GW; Wang H
    J Neurosci Methods; 1997 Oct; 76(2):123-33. PubMed ID: 9350963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.