These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 361174)

  • 41. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes.
    Swadlow HA; Bereshpolova Y; Bezdudnaya T; Cano M; Stoelzel CR
    J Neurophysiol; 2005 May; 93(5):2959-65. PubMed ID: 15601730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recording for several days from single cortical neurons in completely unrestrained cats.
    Burns BD; Stean JP; Webb AC
    Electroencephalogr Clin Neurophysiol; 1974 Mar; 36(3):314-8. PubMed ID: 4130612
    [No Abstract]   [Full Text] [Related]  

  • 43. A system for multiple unit recording during avoidance behavior of the rabbit.
    Gabriel M
    Physiol Behav; 1974 Jan; 12(1):145-8. PubMed ID: 4589466
    [No Abstract]   [Full Text] [Related]  

  • 44. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays.
    Zhao Z; Li X; He F; Wei X; Lin S; Xie C
    J Neural Eng; 2019 Jun; 16(3):035001. PubMed ID: 30736013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress.
    Trulson ME; Preussler DW
    Exp Neurol; 1984 Feb; 83(2):367-77. PubMed ID: 6692873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A stereotaxic method of recording from single neurons in the intact in vivo eye of the cat.
    Molenaar J; Van de Grind WA
    J Neurosci Methods; 1980 Apr; 2(2):135-52. PubMed ID: 6993795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Control of unitary activities in cerebellothalamic pathway during wakefulness and synchronized sleep.
    Steriade M; Apostol V; Oakson G
    J Neurophysiol; 1971 May; 34(3):389-413. PubMed ID: 4327048
    [No Abstract]   [Full Text] [Related]  

  • 48. A compact amplifier for extracellular recording.
    Brakel S; Babb T; Mahnke J; Verzeano M
    Physiol Behav; 1971 Jun; 6(6):731-3. PubMed ID: 4948154
    [No Abstract]   [Full Text] [Related]  

  • 49. A reversible system for chronic recordings in macaque monkeys.
    Pigarev IN; Nothdurft HC; Kastner S
    J Neurosci Methods; 1997 Dec; 77(2):157-62. PubMed ID: 9489892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuronal coding of motivational level during sleep.
    Jacobs BL; Harper RM; McGinty DJ
    Physiol Behav; 1970 Oct; 5(10):1139-43. PubMed ID: 4333086
    [No Abstract]   [Full Text] [Related]  

  • 51. A procedure for implanting organized arrays of microwires for single-unit recordings in awake, behaving animals.
    Barker DJ; Root DH; Coffey KR; Ma S; West MO
    J Vis Exp; 2014 Feb; (84):e51004. PubMed ID: 24561332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel stereotaxic apparatus for neuronal recordings in awake head-restrained rats.
    Chaniary KD; Baron MS; Robinson P; Rice AC; Wetzel PA; Shapiro SM
    J Neurosci Methods; 2011 May; 198(1):29-35. PubMed ID: 21392531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Dynamics of the neuronal activity of the posterior hypothalamus during a phase shift of the wakefulness-sleep cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1988; 20(2):160-7. PubMed ID: 3398968
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Long-term recording of single unit activity and criteria for estimation of stability].
    Vasilyeva LN; Badakva AM; Miller NV; Zobova LN; Roschin VY; Bondar IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(6):693-701. PubMed ID: 25975145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A screw microdrive for adjustable chronic unit recording in monkeys.
    Nichols AM; Ruffner TW; Sommer MA; Wurtz RH
    J Neurosci Methods; 1998 Jun; 81(1-2):185-8. PubMed ID: 9696324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Microelectrode method of studying the human brain and several aspects of its application in neurosurgical clinical practice].
    Raeva SN
    Usp Fiziol Nauk; 1977; 8(4):62-97. PubMed ID: 201122
    [No Abstract]   [Full Text] [Related]  

  • 57. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Norepinephrine-containing neurons: changes in spontaneous discharge patterns during sleeping and waking.
    Chu N; Bloom FE
    Science; 1973 Mar; 179(4076):908-10. PubMed ID: 4347167
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Easy construction of an improved fine wire electrode for chronic single neuron recording in freely moving animals.
    Yamamoto T
    Physiol Behav; 1987; 39(5):649-52. PubMed ID: 3588714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.