BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 36117516)

  • 1. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices.
    Ishihara K
    Sci Technol Adv Mater; 2022; 23(1):498-524. PubMed ID: 36117516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled biointerfaces with biomimetic phosphorus-containing polymers.
    Hiranphinyophat S; Iwasaki Y
    Sci Technol Adv Mater; 2021 May; 22(1):301-316. PubMed ID: 34104114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances of multifunctional zwitterionic polymers for biomedical application.
    Lv W; Wang Y; Fu H; Liang Z; Huang B; Jiang R; Wu J; Zhao Y
    Acta Biomater; 2024 Jun; 181():19-45. PubMed ID: 38729548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
    Li W; Liu Q; Liu L
    J Biomater Sci Polym Ed; 2014; 25(14-15):1730-42. PubMed ID: 25136859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-Compatible Surfaces with Phosphorylcholine-Based Polymers for Cardiovascular Medical Devices.
    Ishihara K
    Langmuir; 2019 Feb; 35(5):1778-1787. PubMed ID: 30056709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zwitterionic materials for antifouling membrane surface construction.
    He M; Gao K; Zhou L; Jiao Z; Wu M; Cao J; You X; Cai Z; Su Y; Jiang Z
    Acta Biomater; 2016 Aug; 40():142-152. PubMed ID: 27025359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells.
    Ishihara K; Chen W; Liu Y; Tsukamoto Y; Inoue Y
    Sci Technol Adv Mater; 2016; 17(1):300-312. PubMed ID: 27877883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting hydrophilic surface generated on poly(dimethyl siloxane) with photoreactive zwitterionic polymers.
    Nakano H; Kakinoki S; Iwasaki Y
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111900. PubMed ID: 34102530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems.
    Li D; Wei Q; Wu C; Zhang X; Xue Q; Zheng T; Cao M
    Adv Colloid Interface Sci; 2020 Apr; 278():102141. PubMed ID: 32213350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials.
    Ishihara K
    J Biomed Mater Res A; 2019 May; 107(5):933-943. PubMed ID: 30701666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscaled Morphology and Mechanical Properties of a Biomimetic Polymer Surface on a Silicone Hydrogel Contact Lens.
    Shi X; Sharma V; Cantu-Crouch D; Yao G; Fukazawa K; Ishihara K; Wu JY
    Langmuir; 2021 Nov; 37(47):13961-13967. PubMed ID: 34788044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications.
    Lin CH; Luo SC
    Langmuir; 2022 Jun; 38(24):7383-7399. PubMed ID: 35675211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study on the Lubrication Mechanism and Performance of Two Representative Ionic and Nonionic Self-Adhesive Polymer Coatings.
    Jia Y; Yang Y; Zhang H
    Langmuir; 2024 Apr; 40(15):8271-8283. PubMed ID: 38557053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales.
    Seetasang S; Xu Y
    J Mater Chem B; 2022 Apr; 10(14):2323-2337. PubMed ID: 35142776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function study of poly(sulfobetaine 3,4-ethylenedioxythiophene) (PSBEDOT) and its derivatives.
    Lee CJ; Wang H; Young M; Li S; Cheng F; Cong H; Cheng G
    Acta Biomater; 2018 Jul; 75():161-170. PubMed ID: 29879552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo design of functional zwitterionic biomimetic material for immunomodulation.
    Li B; Yuan Z; Jain P; Hung HC; He Y; Lin X; McMullen P; Jiang S
    Sci Adv; 2020 May; 6(22):eaba0754. PubMed ID: 32523997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.
    Kwon HJ; Lee Y; Phuong LT; Seon GM; Kim E; Park JC; Yoon H; Park KD
    Acta Biomater; 2017 Oct; 61():169-179. PubMed ID: 28782724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between Biomolecules and Zwitterionic Moieties: A Review.
    Erfani A; Seaberg J; Aichele CP; Ramsey JD
    Biomacromolecules; 2020 Jul; 21(7):2557-2573. PubMed ID: 32479065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.