These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 361188)

  • 1. Role of creatine phosphokinase in cellular function and metabolism.
    Saks VA; Rosenshtraukh LV; Smirnov VN; Chazov EI
    Can J Physiol Pharmacol; 1978 Oct; 56(5):691-706. PubMed ID: 361188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI
    Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle].
    Saks VA; Seppet EK; Liulina NV
    Biokhimiia; 1977 Apr; 42(4):579-88. PubMed ID: 870086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isozymes of creatine kinase in mammalian cell cultures.
    Van Brussel E; Yang JJ; Seraydarian MW
    J Cell Physiol; 1983 Aug; 116(2):221-6. PubMed ID: 6863402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The functional coupling between Ca2+-ATPase and creatine phosphokinase in heart muscle sarcoplasmic reticulum].
    Levitskiĭ DO; Levchenko TS; Saks VA; Sharov VG; Smirnov VN
    Biokhimiia; 1977 Oct; 42(10):1766-73. PubMed ID: 144537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible MM-creatine kinase binding to cardiac myofibrils.
    Ventura-Clapier R; Saks VA; Vassort G; Lauer C; Elizarova GV
    Am J Physiol; 1987 Sep; 253(3 Pt 1):C444-55. PubMed ID: 3307451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The functional coupling between MM isozyme of creatine phosphokinase (EC 2.7.3.2.) and MgATPase of myofibrils and (Na, K)ATPase of plasma membrane in heart cells].
    Saks VA; Lipina NV; Chernousova GB; Sharov VG; Smirnov VN; Chazov EI; Grosse R
    Biokhimiia; 1976 Dec; 41(12):2099-109. PubMed ID: 139170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular energy transport and control of cardiac contraction.
    Saks VA; Kupriyanov VV
    Adv Myocardiol; 1982; 3():475-97. PubMed ID: 6221378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle.
    Wallimann T; Schlösser T; Eppenberger HM
    J Biol Chem; 1984 Apr; 259(8):5238-46. PubMed ID: 6143755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions.
    Saks VA; Chernousova GB; Gukovsky DE; Smirnov VN; Chazov EI
    Eur J Biochem; 1975 Sep; 57(1):273-90. PubMed ID: 126157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts.
    Wilding JR; Joubert F; de Araujo C; Fortin D; Novotova M; Veksler V; Ventura-Clapier R
    J Physiol; 2006 Aug; 575(Pt 1):191-200. PubMed ID: 16740607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The creatine-creatine phosphate shuttle for energy transport-compartmentation of creatine phosphokinase in muscle.
    Erickson-Viitanen S; Geiger P; Yang WC; Bessman SP
    Adv Exp Med Biol; 1982; 151():115-25. PubMed ID: 6217725
    [No Abstract]   [Full Text] [Related]  

  • 14. On the triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for the existence of myofibrillar and mitochondrial isoenzymes.
    Scholte HR
    Biochim Biophys Acta; 1973 May; 305(2):413-27. PubMed ID: 4354874
    [No Abstract]   [Full Text] [Related]  

  • 15. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK; Saks VA
    Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intimate coupling of creatine phosphokinase and myofibrillar adenosinetriphosphatase.
    Bessman SP; Yang WC; Geiger PJ; Erickson-Viitanen S
    Biochem Biophys Res Commun; 1980 Oct; 96(3):1414-20. PubMed ID: 6449202
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetic properties and the functional role of particulate MM-isoenzyme of creatine phosphokinase bound to heart muscle myofibrils.
    Saks VA; Chernousova GB; Vetter R; Smirnov VN; Chazov EI
    FEBS Lett; 1976 Mar; 62(3):293-6. PubMed ID: 1278371
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of creatine phosphokinase in supplying energy for the calcium pump system of heart sarcoplasmic reticulum.
    Levitsky DO; Levchenko TS; Saks VA; Sharov VG; Smirnov VN
    Membr Biochem; 1978; 2(1):81-96. PubMed ID: 45783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.