These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 361188)

  • 21. Mitochondrial creatine kinase in mammalian myocardial cells in culture.
    Seraydarian MW; Yang JJ
    Adv Myocardiol; 1982; 3():613-20. PubMed ID: 7170446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The localization of the MM isozyme of creatine phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na+, K+)-ATPase.
    Saks VA; Lipina NV; Sharov VG; Smirnov VN; Chazov E; Grosse R
    Biochim Biophys Acta; 1977 Mar; 465(3):550-8. PubMed ID: 138445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Molecular mechanisms of the changes in myocardial energy metabolism in pathology].
    Saks VA; Smirnov VN
    Kardiologiia; 1980 May; 20(5):10-2. PubMed ID: 7392371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Role of creatine phosphokinase systems in regulating the force of myocardial contraction in frog ventricles].
    Rozenshtraukh LV; Saks VA; Undrovinas AI; Iuravichus IA; Iushmanova AV
    Fiziol Zh SSSR Im I M Sechenova; 1977 May; 63(5):681-8. PubMed ID: 302225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histochemistry of creatine phosphokinase.
    Baba N; Kim S; Farrell EC
    J Mol Cell Cardiol; 1976 Aug; 8(8):599-617. PubMed ID: 972408
    [No Abstract]   [Full Text] [Related]  

  • 26. [Myofibrillar creatine kinase: reversible binding to contractile proteins, stoichiometric ratio to myosin and its functional role].
    Elizarova GV; Sukhanov AA; Saks VA
    Biokhimiia; 1987 Apr; 52(4):667-75. PubMed ID: 2954589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic properties and functional role of creatine phosphokinase in glycerinated muscle fibers--further evidence for compartmentation.
    Savabi F; Geiger PJ; Bessman SP
    Biochem Biophys Res Commun; 1983 Jul; 114(2):785-90. PubMed ID: 6882454
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiac myofibrillar creatine kinase Km is not influenced by contractile protein binding.
    Dowell RT; Fu MC
    Life Sci; 1992; 50(20):1551-9. PubMed ID: 1579047
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myofibrillar creatine kinase and cardiac contraction.
    Ventura-Clapier R; Veksler V; Hoerter JA
    Mol Cell Biochem; 1994; 133-134():125-44. PubMed ID: 7808450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle.
    Ventura-Clapier R; Vassort G
    Pflugers Arch; 1985 May; 404(2):157-61. PubMed ID: 3874393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of energy in muscle: the phosphorylcreatine shuttle.
    Bessman SP; Geiger PJ
    Science; 1981 Jan; 211(4481):448-52. PubMed ID: 6450446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Relationship between the strength of myocardial fiber contraction of frog heart ventricle and processes of intracellular energy transport].
    Rozenshtraukh LV; Saks VA; Undrovinas AI; Iushmanova AV; Smirnov VN
    Fiziol Zh SSSR Im I M Sechenova; 1976 Aug; 62(8):1199-1209. PubMed ID: 1086803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcellular creatine kinase alterations. Implications in heart failure.
    De Sousa E; Veksler V; Minajeva A; Kaasik A; Mateo P; Mayoux E; Hoerter J; Bigard X; Serrurier B; Ventura-Clapier R
    Circ Res; 1999 Jul; 85(1):68-76. PubMed ID: 10400912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Physiological role of the creatine kinase system and the problem of regulating the activity of mitochondrial creatine kinase].
    Lipskaia TIu
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1986; (9):5-14. PubMed ID: 3535908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ study of myofibrils, mitochondria and bound creatine kinases in experimental cardiomyopathies.
    Veksler V; Ventura-Clapier R
    Mol Cell Biochem; 1994; 133-134():287-98. PubMed ID: 7808460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Activity of several membrane-bound creatine kinase isoenzymes in the rabbit myocardium in experimental disruption of coronary circulation].
    Voronkov GS
    Vopr Med Khim; 1984; 30(2):125-6. PubMed ID: 6740989
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase.
    Korge P; Byrd SK; Campbell KB
    Eur J Biochem; 1993 May; 213(3):973-80. PubMed ID: 8504836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental changes in creatine kinase and aldolase isoenzymes and their possible function in association with contractile elements.
    Turner DC; Eppenberger HM
    Enzyme; 1973; 15(1):224-38. PubMed ID: 4593960
    [No Abstract]   [Full Text] [Related]  

  • 39. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.