These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36119593)
1. A multiple phenotype imputation method for genetic diversity and core collection in Taiwanese vegetable soybean. Huang YH; Ku HM; Wang CA; Chen LY; He SS; Chen S; Liao PC; Juan PY; Kao CF Front Plant Sci; 2022; 13():948349. PubMed ID: 36119593 [TBL] [Abstract][Full Text] [Related]
2. A Modified Roger's Distance Algorithm for Mixed Quantitative-Qualitative Phenotypes to Establish a Core Collection for Taiwanese Vegetable Soybeans. Kao CF; He SS; Wang CS; Lai ZY; Lin DG; Chen S Front Plant Sci; 2020; 11():612106. PubMed ID: 33510755 [TBL] [Abstract][Full Text] [Related]
3. Genetic profiles and phenotypic patterns in Taiwanese Phalaenopsis orchids: a two-step phenotype and genotype strategy using modified genetic distance algorithms. Lai YS; Chen SY; Wu YJ; Chen WH; Chen HH; Lin YY; Lin TC; Lin TJ; Kao CF Front Plant Sci; 2024; 15():1416886. PubMed ID: 39323534 [TBL] [Abstract][Full Text] [Related]
4. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection. Zhang Y; Zhang X; Che Z; Wang L; Wei W; Li D BMC Genet; 2012 Nov; 13():102. PubMed ID: 23153260 [TBL] [Abstract][Full Text] [Related]
5. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. Jeong N; Kim KS; Jeong S; Kim JY; Park SK; Lee JS; Jeong SC; Kang ST; Ha BK; Kim DY; Kim N; Moon JK; Choi MS PLoS One; 2019; 14(10):e0224074. PubMed ID: 31639154 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic Characterization, Genetic Diversity Assessment in 6,778 Accessions of Barley ( Kaur V; Aravind J; Manju ; Jacob SR; Kumari J; Panwar BS; Pal N; Rana JC; Pandey A; Kumar A Front Plant Sci; 2022; 13():771920. PubMed ID: 35283876 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection. Li X; Zhou Y; Bu Y; Wang X; Zhang Y; Guo N; Zhao J; Xing H Genes Genomics; 2021 Aug; 43(8):897-912. PubMed ID: 33956328 [TBL] [Abstract][Full Text] [Related]
8. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. Lee HY; Ro NY; Jeong HJ; Kwon JK; Jo J; Ha Y; Jung A; Han JW; Venkatesh J; Kang BC BMC Genet; 2016 Nov; 17(1):142. PubMed ID: 27842492 [TBL] [Abstract][Full Text] [Related]
10. Seed physiological traits and environmental factors influence seedling establishment of vegetable soybean ( Li X; Liu K; Rideout S; Rosso L; Zhang B; Welbaum GE Front Plant Sci; 2024; 15():1344895. PubMed ID: 38887465 [TBL] [Abstract][Full Text] [Related]
11. Impact of multiple selective breeding programs on genetic diversity in soybean germplasm. Viana JPG; Fang Y; Avalos A; Song Q; Nelson R; Hudson ME Theor Appl Genet; 2022 May; 135(5):1591-1602. PubMed ID: 35220446 [TBL] [Abstract][Full Text] [Related]
12. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding. Haupt M; Schmid K Plant Cell Environ; 2020 Jun; 43(6):1421-1436. PubMed ID: 32227644 [TBL] [Abstract][Full Text] [Related]
13. Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans. Xavier A; Muir WM; Rainey KM BMC Bioinformatics; 2016 Feb; 17():55. PubMed ID: 26830693 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Phenotypic Characterization and Diversity Analysis of Soybean Roots ( Kim SH; Subramanian P; Hahn BS; Ha BK Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956495 [TBL] [Abstract][Full Text] [Related]
15. Morphological and microsatellite marker-based characterization and diversity analysis of novel vegetable soybean [Glycine max (L.) Merrill]. Pardeshi P; Jadhav P; Sakhare S; Zunjare R; Rathod D; Sonkamble P; Saroj R; Varghese P Mol Biol Rep; 2023 May; 50(5):4049-4060. PubMed ID: 36869205 [TBL] [Abstract][Full Text] [Related]
16. Genetic Diversity Analysis and Core Germplasm Collection Construction of Zhu Y; Liang D; Song Z; Tan Y; Guo X; Wang D Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553618 [TBL] [Abstract][Full Text] [Related]
17. Composite core set construction and diversity analysis of Iranian walnut germplasm using molecular markers and phenotypic traits. Mahmoodi R; Dadpour MR; Hassani D; Zeinalabedini M; Vendramin E; Leslie CA PLoS One; 2021; 16(3):e0248623. PubMed ID: 33725012 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. Cuevas HE; Prom LK BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Phenotypic Variations and Correlation among Seed Composition Traits in Mutagenized Soybean Populations. Zhou Z; Lakhssassi N; Cullen MA; El Baz A; Vuong TD; Nguyen HT; Meksem K Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31783508 [TBL] [Abstract][Full Text] [Related]
20. A Genome-Wide Genetic Diversity Scan Reveals Multiple Signatures of Selection in a European Soybean Collection Compared to Chinese Collections of Wild and Cultivated Soybean Accessions. Saleem A; Muylle H; Aper J; Ruttink T; Wang J; Yu D; Roldán-Ruiz I Front Plant Sci; 2021; 12():631767. PubMed ID: 33732276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]