BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36119754)

  • 1. Investigating the COVID-19 vaccine discussions on Twitter through a multilayer network-based approach.
    Bonifazi G; Breve B; Cirillo S; Corradini E; Virgili L
    Inf Process Manag; 2022 Nov; 59(6):103095. PubMed ID: 36119754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Political quarrel overshadows vaccination advocacy: How the vaccine debate on Brazilian Twitter was framed by anti-vaxxers during Bolsonaro administration.
    Verjovsky M; Barreto MP; Carmo I; Coutinho B; Thomer L; Lifschitz S; Jurberg C
    Vaccine; 2023 Sep; 41(39):5715-5721. PubMed ID: 37550146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dramatic increase in anti-vaccine discourses during the COVID-19 pandemic: a social network analysis of Twitter.
    Durmaz N; Hengirmen E
    Hum Vaccin Immunother; 2022 Dec; 18(1):2025008. PubMed ID: 35113767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data.
    Ahmed W; Vidal-Alaball J; Downing J; López Seguí F
    J Med Internet Res; 2020 May; 22(5):e19458. PubMed ID: 32352383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The #VaccinesWork Hashtag on Twitter in the Context of the COVID-19 Pandemic: Network Analysis.
    Fuster-Casanovas A; Das R; Vidal-Alaball J; Lopez Segui F; Ahmed W
    JMIR Public Health Surveill; 2022 Oct; 8(10):e38153. PubMed ID: 36219832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the Negative Discourse Toward COVID-19 Vaccines: Topic Modeling Study and an Annotated Data Set of Twitter Posts.
    Lindelöf G; Aledavood T; Keller B
    J Med Internet Res; 2023 Apr; 25():e41319. PubMed ID: 36877804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence-Based Infodemiology Study.
    Benis A; Chatsubi A; Levner E; Ashkenazi S
    JMIR Infodemiology; 2021; 1(1):e31983. PubMed ID: 34693212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twitter's Role in Combating the Magnetic Vaccine Conspiracy Theory: Social Network Analysis of Tweets.
    Ahmed W; Das R; Vidal-Alaball J; Hardey M; Fuster-Casanovas A
    J Med Internet Res; 2023 Mar; 25():e43497. PubMed ID: 36927550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative and quantitative evaluation of the use of Twitter as a tool of antimicrobial stewardship.
    Cumbraos-Sánchez MJ; Hermoso R; Iñiguez D; Paño-Pardo JR; Allende Bandres MÁ; Latorre Martinez MP
    Int J Med Inform; 2019 Nov; 131():103955. PubMed ID: 31487575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Vaccine Tweets During the Early Stage of the COVID-19 Outbreak in the United States: Topic Modeling Analysis.
    Jiang LC; Chu TH; Sun M
    JMIR Infodemiology; 2021; 1(1):e25636. PubMed ID: 34604707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring User Opinions and Side Effects on COVID-19 Vaccines in the Twittersphere: Infodemiology Study of Tweets.
    Portelli B; Scaboro S; Tonino R; Chersoni E; Santus E; Serra G
    J Med Internet Res; 2022 May; 24(5):e35115. PubMed ID: 35446781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of COVID-19 Misinformation in Arabic on Twitter: Content Analysis.
    Al-Rawi A; Fakida A; Grounds K
    JMIR Infodemiology; 2022; 2(2):e37007. PubMed ID: 35915823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vaccine discourse during the onset of the COVID-19 pandemic: Topical structure and source patterns informing efforts to combat vaccine hesitancy.
    Hwang J; Su MH; Jiang X; Lian R; Tveleneva A; Shah D
    PLoS One; 2022; 17(7):e0271394. PubMed ID: 35895626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COVID-19 Vaccine Hesitancy on Social Media: Building a Public Twitter Data Set of Antivaccine Content, Vaccine Misinformation, and Conspiracies.
    Muric G; Wu Y; Ferrara E
    JMIR Public Health Surveill; 2021 Nov; 7(11):e30642. PubMed ID: 34653016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Social network analysis of Twitter interactions: a directed multilayer network approach.
    Logan AP; LaCasse PM; Lunday BJ
    Soc Netw Anal Min; 2023; 13(1):65. PubMed ID: 37041934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MonkeyPox2022Tweets: A Large-Scale Twitter Dataset on the 2022 Monkeypox Outbreak, Findings from Analysis of Tweets, and Open Research Questions.
    Thakur N
    Infect Dis Rep; 2022 Nov; 14(6):855-883. PubMed ID: 36412745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. #Covid-19: An exploratory investigation of hashtag usage on Twitter.
    Petersen K; Gerken JM
    Health Policy; 2021 Apr; 125(4):541-547. PubMed ID: 33487479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggressive behaviour of anti-vaxxers and their toxic replies in English and Japanese.
    Miyazaki K; Uchiba T; Tanaka K; Sasahara K
    Humanit Soc Sci Commun; 2022; 9(1):229. PubMed ID: 35811839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis.
    Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ
    J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the role of participants in evolution of topic lifecycles on social networks.
    Dey K; Kaushik S; Garg K; Shrivastava R
    Comput Soc Netw; 2018; 5(1):6. PubMed ID: 30148044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.