These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36120114)

  • 61. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Incorporating functionalized graphene oxide into diethylene triamine-based nanofiltration membranes can improve the removal of emerging organic micropollutants.
    Baig N; Matin A
    J Colloid Interface Sci; 2024 Dec; 676():657-669. PubMed ID: 39053413
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater.
    Gwon EM; Yu MJ; Oh HK; Ylee YH
    Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biochar enhances the biotransformation of organic micropollutants (OMPs) in an anaerobic membrane bioreactor treating sewage.
    Lei Z; Zhang S; Wang L; Li Q; Li YY; Wang XC; Chen R
    Water Res; 2022 Sep; 223():118974. PubMed ID: 35988338
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives.
    Mastropietro TF; Bruno R; Pardo E; Armentano D
    Dalton Trans; 2021 Apr; 50(16):5398-5410. PubMed ID: 33908956
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Application of forward osmosis membrane in nanofiltration mode to treat reverse osmosis concentrate from wastewater reclamation plants.
    Jamil S; Jeong S; Vigneswaran S
    Water Sci Technol; 2018 May; 77(7-8):1990-1997. PubMed ID: 29722684
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges.
    Elsaid K; Olabi AG; Abdel-Wahab A; Elkamel A; Alami AH; Inayat A; Chae KJ; Abdelkareem MA
    Sci Total Environ; 2023 Jun; 879():162569. PubMed ID: 36871724
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review.
    Shen J; Schäfer A
    Chemosphere; 2014 Dec; 117():679-91. PubMed ID: 25461935
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Removal of steroid micropollutants by polymer-based spherical activated carbon (PBSAC) assisted membrane filtration.
    Tagliavini M; Schäfer AI
    J Hazard Mater; 2018 Jul; 353():514-521. PubMed ID: 29719277
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Removal of Doxycycline from Water using
    Zahoor M; Wahab M; Salman SM; Sohail A; Ali EA; Ullah R
    Bioinorg Chem Appl; 2022; 2022():2694487. PubMed ID: 35340420
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes.
    Montenegro-Landívar MF; Tapia-Quirós P; Vecino X; Reig M; Granados M; Farran A; Cortina JL; Saurina J; Valderrama C
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review.
    Damtie MM; Woo YC; Kim B; Hailemariam RH; Park KD; Shon HK; Park C; Choi JS
    J Environ Manage; 2019 Dec; 251():109524. PubMed ID: 31542619
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A thorough analysis of the occurrence, removal and environmental risks of organic micropollutants in a full-scale hybrid membrane bioreactor fed by hospital wastewater.
    Gutierrez M; Mutavdžić Pavlović D; Stipaničev D; Repec S; Avolio F; Zanella M; Verlicchi P
    Sci Total Environ; 2024 Mar; 914():169848. PubMed ID: 38190908
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review.
    Wang H; Yang J; Zhang H; Zhao J; Liu H; Wang J; Li G; Liang H
    Sci Total Environ; 2024 Jan; 908():168277. PubMed ID: 37939956
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes.
    Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H
    Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049
    [TBL] [Abstract][Full Text] [Related]  

  • 77. State-of-the-Art of Polymer/Fullerene C
    Kausar A; Ahmad I; Maaza M; Eisa MH
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676834
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A quick test method for predicting the adsorption of organic micropollutants on activated carbon.
    Zhang Q; Jekel M; Zhang Y; Ruhl AS
    Water Res; 2022 Nov; 226():119217. PubMed ID: 36257157
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes.
    Ahmad J; Naeem S; Ahmad M; Usman ARA; Al-Wabel MI
    J Environ Manage; 2019 Sep; 246():214-228. PubMed ID: 31176983
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: removal of nutrients and micropollutants, and characterization of membrane foulants.
    Chon K; Cho J; Shon HK
    Bioresour Technol; 2013 Aug; 141():109-16. PubMed ID: 23611699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.