These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 36120538)

  • 1. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling.
    Zhou X; Torres VE
    Front Mol Biosci; 2022; 9():981963. PubMed ID: 36120538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling.
    Sussman CR; Wang X; Chebib FT; Torres VE
    Cell Signal; 2020 Aug; 72():109649. PubMed ID: 32335259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulatory 1α subunit of protein kinase A modulates renal cystogenesis.
    Ye H; Wang X; Constans MM; Sussman CR; Chebib FT; Irazabal MV; Young WF; Harris PC; Kirschner LS; Torres VE
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F677-F686. PubMed ID: 28615245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys.
    Yamaguchi T; Nagao S; Wallace DP; Belibi FA; Cowley BD; Pelling JC; Grantham JJ
    Kidney Int; 2003 Jun; 63(6):1983-94. PubMed ID: 12753285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the role of vasopressin antagonism in polycystic kidney diseases: From adults to children?
    Janssens P; Weydert C; De Rechter S; Wissing KM; Liebau MC; Mekahli D
    Pediatr Nephrol; 2018 Mar; 33(3):395-408. PubMed ID: 28455745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism-based approaches for autosomal dominant polycystic kidney disease.
    Bakaj I; Pocai A
    Front Mol Biosci; 2023; 10():1126055. PubMed ID: 36876046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions.
    Malekshahabi T; Khoshdel Rad N; Serra AL; Moghadasali R
    J Cell Physiol; 2019 Aug; 234(8):12451-12470. PubMed ID: 30644092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Clinical Manifestation and Management of Autosomal Dominant Polycystic Kidney Disease in China.
    Xue C; Zhou CC; Wu M; Mei CL
    Kidney Dis (Basel); 2016 Oct; 2(3):111-119. PubMed ID: 27921038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmoregulation, vasopressin, and cAMP signaling in autosomal dominant polycystic kidney disease.
    Devuyst O; Torres VE
    Curr Opin Nephrol Hypertens; 2013 Jul; 22(4):459-70. PubMed ID: 23736843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TOLVAPTAN USE IN SEVERE NEONATAL AUTOSOMAL DOMINANT POLYCYSTIC KIDNEY DISEASE (ADPKD): THE PHARMACEUTICAL CHALLENGE.
    Olalekan K; Fox A; Gilbert R
    Arch Dis Child; 2016 Sep; 101(9):e2. PubMed ID: 27540244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetics and physiology of polycystic kidney disease.
    Calvet JP; Grantham JJ
    Semin Nephrol; 2001 Mar; 21(2):107-23. PubMed ID: 11245774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autosomal dominant polycystic kidney disease and pioglitazone for its therapy: a comprehensive review with an emphasis on the molecular pathogenesis and pharmacological aspects.
    Saini AK; Saini R; Singh S
    Mol Med; 2020 Dec; 26(1):128. PubMed ID: 33308138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway.
    Yamaguchi T; Pelling JC; Ramaswamy NT; Eppler JW; Wallace DP; Nagao S; Rome LA; Sullivan LP; Grantham JJ
    Kidney Int; 2000 Apr; 57(4):1460-71. PubMed ID: 10760082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Tolvaptan, a vasopressin V
    Yamada Y; Fujiki H; Mizuguchi H; Takeshita Y; Hattori K; Ohmoto K; Aihara M; Nagano K; Isakari Y; Yamamoto M; Yamamura Y
    Nihon Yakurigaku Zasshi; 2022; 157(4):254-260. PubMed ID: 35781456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease.
    Parker MI; Nikonova AS; Sun D; Golemis EA
    Cell Signal; 2020 Mar; 67():109497. PubMed ID: 31830556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism and mitochondria in polycystic kidney disease research and therapy.
    Padovano V; Podrini C; Boletta A; Caplan MJ
    Nat Rev Nephrol; 2018 Nov; 14(11):678-687. PubMed ID: 30120380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic advances in ADPKD: the future awaits.
    Capuano I; Buonanno P; Riccio E; Amicone M; Pisani A
    J Nephrol; 2022 Mar; 35(2):397-415. PubMed ID: 34009558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD).
    Banales JM; Masyuk TV; Gradilone SA; Masyuk AI; Medina JF; LaRusso NF
    Hepatology; 2009 Jan; 49(1):160-74. PubMed ID: 19065671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of P-TEFb by cAMP-PKA signaling in autosomal dominant polycystic kidney disease.
    Sun Y; Liu Z; Cao X; Lu Y; Mi Z; He C; Liu J; Zheng Z; Li MJ; Li T; Xu D; Wu M; Cao Y; Li Y; Yang B; Mei C; Zhang L; Chen Y
    Sci Adv; 2019 Jun; 5(6):eaaw3593. PubMed ID: 31183407
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.