BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36120606)

  • 1. Impact of Intraoperative Magnetic Resonance Imaging (i-MRI) on Surgeon Decision Making and Clinical Outcomes in Cranial Tumor Surgery.
    Bunyaratavej K; Siwanuwatn R; Tuchinda L; Wangsawatwong P
    Asian J Neurosurg; 2022 Jun; 17(2):218-226. PubMed ID: 36120606
    [No Abstract]   [Full Text] [Related]  

  • 2. Factors triggering an additional resection and determining residual tumor volume on intraoperative MRI: analysis from a prospective single-center registry of supratentorial gliomas.
    Scherer M; Jungk C; Younsi A; Kickingereder P; Müller S; Unterberg A
    Neurosurg Focus; 2016 Mar; 40(3):E4. PubMed ID: 26926062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surgical benefits of combined awake craniotomy and intraoperative magnetic resonance imaging for gliomas associated with eloquent areas.
    Motomura K; Natsume A; Iijima K; Kuramitsu S; Fujii M; Yamamoto T; Maesawa S; Sugiura J; Wakabayashi T
    J Neurosurg; 2017 Oct; 127(4):790-797. PubMed ID: 28059650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pituitary surgery and volumetric assessment of extent of resection: a paradigm shift in the use of intraoperative magnetic resonance imaging.
    Serra C; Burkhardt JK; Esposito G; Bozinov O; Pangalu A; Valavanis A; Holzmann D; Schmid C; Regli L
    Neurosurg Focus; 2016 Mar; 40(3):E17. PubMed ID: 26926057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of combined intraoperative electrophysiological investigation with 3-T intraoperative MRI for awake cerebral glioma surgery: comprehensive review of the clinical implications and radiological outcomes.
    Ghinda D; Zhang N; Lu J; Yao CJ; Yuan S; Wu JS
    Neurosurg Focus; 2016 Mar; 40(3):E14. PubMed ID: 26926054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the extent of resection and detection of ischemic lesions with intraoperative MRI in glioma surgery: is intraoperative MRI superior to early postoperative MRI?
    Masuda Y; Akutsu H; Ishikawa E; Matsuda M; Masumoto T; Hiyama T; Yamamoto T; Kohzuki H; Takano S; Matsumura A
    J Neurosurg; 2018 Aug; 131(1):209-216. PubMed ID: 30095340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial impact of high-field intraoperative magnetic resonance imaging on the efficacy of pediatric low-grade glioma surgery.
    Roder C; Breitkopf M; Ms ; Bisdas S; Freitas Rda S; Dimostheni A; Ebinger M; Wolff M; Tatagiba M; Schuhmann MU
    Neurosurg Focus; 2016 Mar; 40(3):E13. PubMed ID: 26926053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis.
    Hatiboglu MA; Weinberg JS; Suki D; Rao G; Prabhu SS; Shah K; Jackson E; Sawaya R
    Neurosurgery; 2009 Jun; 64(6):1073-81; discussion 1081. PubMed ID: 19487886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ten years' experience with intraoperative MRI-assisted transsphenoidal pituitary surgery.
    Hlaváč M; Knoll A; Mayer B; Braun M; Karpel-Massler G; Etzrodt-Walter G; Coburger J; Wirtz CR; Paľa A
    Neurosurg Focus; 2020 Jun; 48(6):E14. PubMed ID: 32480376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative perception and estimates on extent of resection during awake glioma surgery: overcoming the learning curve.
    Lau D; Hervey-Jumper SL; Han SJ; Berger MS
    J Neurosurg; 2018 May; 128(5):1410-1418. PubMed ID: 28731401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of tumor remnants in intraoperative MRI-assisted microscopic and endoscopic transsphenoidal resection of less invasive pituitary adenomas.
    Paľa A; Etzrodt-Walter G; Karpel-Massler G; Pedro MT; Mayer B; Coburger J; Wirtz CR; Hlaváč M
    Neurosurg Rev; 2022 Apr; 45(2):1701-1708. PubMed ID: 34855027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgery for Glioblastoma: Impact of the Combined Use of 5-Aminolevulinic Acid and Intraoperative MRI on Extent of Resection and Survival.
    Coburger J; Hagel V; Wirtz CR; König R
    PLoS One; 2015; 10(6):e0131872. PubMed ID: 26115409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of Intraoperative Magnetic Resonance Imaging and Intraoperative Fluorescence to Enhance the Resection of Contrast Enhancing Gliomas.
    Gessler F; Forster MT; Duetzmann S; Mittelbronn M; Hattingen E; Franz K; Seifert V; Senft C
    Neurosurgery; 2015 Jul; 77(1):16-22; discussion 22. PubMed ID: 25812066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI.
    Krivosheya D; Rao G; Tummala S; Kumar V; Suki D; Bastos DCA; Prabhu SS
    J Neurol Surg A Cent Eur Neurosurg; 2021 Jul; 82(4):375-380. PubMed ID: 31659724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: analysis of 42 cases.
    Maldaun MV; Khawja SN; Levine NB; Rao G; Lang FF; Weinberg JS; Tummala S; Cowles CE; Ferson D; Nguyen AT; Sawaya R; Suki D; Prabhu SS
    J Neurosurg; 2014 Oct; 121(4):810-7. PubMed ID: 25105702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined use of minimal access craniotomy, intraoperative magnetic resonance imaging, and awake functional mapping for the resection of gliomas in 61 patients.
    Whiting BB; Lee BS; Mahadev V; Borghei-Razavi H; Ahuja S; Jia X; Mohammadi AM; Barnett GH; Angelov L; Rajan S; Avitsian R; Vogelbaum MA
    J Neurosurg; 2019 Jan; 132(1):159-167. PubMed ID: 30684941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative MRI for newly diagnosed supratentorial glioblastoma: a multicenter-registry comparative study to conventional surgery.
    Shah AS; Sylvester PT; Yahanda AT; Vellimana AK; Dunn GP; Evans J; Rich KM; Dowling JL; Leuthardt EC; Dacey RG; Kim AH; Grubb RL; Zipfel GJ; Oswood M; Jensen RL; Sutherland GR; Cahill DP; Abram SR; Honeycutt J; Shah M; Tao Y; Chicoine MR
    J Neurosurg; 2020 Oct; 135(2):505-514. PubMed ID: 33035996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of pediatric glioma outcomes using intraoperative MRI: a multicenter cohort study.
    Karsy M; Akbari SH; Limbrick D; Leuthardt EC; Evans J; Smyth MD; Strahle J; Leonard J; Cheshier S; Brockmeyer DL; Bollo RJ; Kestle JR; Honeycutt J; Donahue DJ; Roberts RA; Hansen DR; Riva-Cambrin J; Sutherland G; Gallagher C; Hader W; Starreveld Y; Hamilton M; Duhaime AC; Jensen RL; Chicoine MR
    J Neurooncol; 2019 Jun; 143(2):271-280. PubMed ID: 30977059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-grade Glioma Surgery in Intraoperative Magnetic Resonance Imaging: Results of a Multicenter Retrospective Assessment of the German Study Group for Intraoperative Magnetic Resonance Imaging.
    Coburger J; Merkel A; Scherer M; Schwartz F; Gessler F; Roder C; Pala A; König R; Bullinger L; Nagel G; Jungk C; Bisdas S; Nabavi A; Ganslandt O; Seifert V; Tatagiba M; Senft C; Mehdorn M; Unterberg AW; Rössler K; Wirtz CR
    Neurosurgery; 2016 Jun; 78(6):775-86. PubMed ID: 26516822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and Opportunities of Intraoperative 3D Ultrasound With Neuronavigation in Relation to Intraoperative MRI.
    Bastos DCA; Juvekar P; Tie Y; Jowkar N; Pieper S; Wells WM; Bi WL; Golby A; Frisken S; Kapur T
    Front Oncol; 2021; 11():656519. PubMed ID: 34026631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.