These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36120662)

  • 1. Band versus Polaron: Charge Transport in Antimony Chalcogenides.
    Wang X; Ganose AM; Kavanagh SR; Walsh A
    ACS Energy Lett; 2022 Sep; 7(9):2954-2960. PubMed ID: 36120662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Electronic and Anharmonic Structural Dynamics for Carrier Self-Trapping in Photovoltaic Antimony Chalcogenides.
    Tao W; Zhu L; Li K; Chen C; Chen Y; Li Y; Li X; Tang J; Shang H; Zhu H
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202154. PubMed ID: 35754307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lone pair driven anisotropy in antimony chalcogenide semiconductors.
    Wang X; Li Z; Kavanagh SR; Ganose AM; Walsh A
    Phys Chem Chem Phys; 2022 Mar; 24(12):7195-7202. PubMed ID: 35262534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent investigation of antimony chalcogenide (Sb
    Rahman MF; Alam Moon MM; Hossain MK; Ali MH; Haque MD; Kuddus A; Hossain J; Md Ismail AB
    Heliyon; 2022 Dec; 8(12):e12034. PubMed ID: 36531642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HTL-Free Sb
    Lu Y; Li K; Yang X; Lu S; Li S; Zheng J; Fu L; Chen C; Tang J
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46858-46865. PubMed ID: 34553903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon signatures for polaron formation in an anharmonic semiconductor.
    Wang F; Chu W; Huber L; Tu T; Dai Y; Wang J; Peng H; Zhao J; Zhu XY
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2122436119. PubMed ID: 35862455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite.
    Wu B; Ning W; Xu Q; Manjappa M; Feng M; Ye S; Fu J; Lie S; Yin T; Wang F; Goh TW; Harikesh PC; Tay YKE; Shen ZX; Huang F; Singh R; Zhou G; Gao F; Sum TC
    Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33597239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carrier mobility of monolayer and bulk GaS: from first-principles calculations.
    Wang J; Zhang R; Xiao H; Zhou R; Gao T
    Phys Chem Chem Phys; 2022 Sep; 24(36):21666-21673. PubMed ID: 36069358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge Transport in Organic Semiconductors: The Perspective from Nonadiabatic Molecular Dynamics.
    Giannini S; Blumberger J
    Acc Chem Res; 2022 Mar; 55(6):819-830. PubMed ID: 35196456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Electron-Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite.
    Steele JA; Puech P; Keshavarz M; Yang R; Banerjee S; Debroye E; Kim CW; Yuan H; Heo NH; Vanacken J; Walsh A; Hofkens J; Roeffaers MBJ
    ACS Nano; 2018 Aug; 12(8):8081-8090. PubMed ID: 30086242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electron-phonon scattering and carrier mobility in monolayer AsSb.
    Luo Y; Zhao G; Wang S
    Phys Chem Chem Phys; 2020 Mar; 22(10):5688-5692. PubMed ID: 32103226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Anisotropic Carrier Transport in WSe
    Choudhary T; Peter J; Biswas RK
    Langmuir; 2024 Jul; 40(26):13476-13485. PubMed ID: 38889432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polaron transport in hybrid CH
    Thongnum A; Pinsook U
    Nanoscale; 2020 Jul; 12(26):14112-14119. PubMed ID: 32597440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep defects limiting the conversion efficiency of Sb
    Dong S; Li G; Hong J; Qi R; Yang S; Yang P; Sun L; Yue F
    Phys Chem Chem Phys; 2023 Feb; 25(6):4617-4623. PubMed ID: 36723191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices.
    Yang Z; Wang X; Chen Y; Zheng Z; Chen Z; Xu W; Liu W; Yang YM; Zhao J; Chen T; Zhu H
    Nat Commun; 2019 Oct; 10(1):4540. PubMed ID: 31586054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Dependent Hole Mobility and Its Limit in Crystal-Phase P3HT Calculated from First Principles.
    Lücke A; Ortmann F; Panhans M; Sanna S; Rauls E; Gerstmann U; Schmidt WG
    J Phys Chem B; 2016 Jun; 120(24):5572-80. PubMed ID: 27245400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatase TiO
    Yan B; Wan D; Chi X; Li C; Motapothula MR; Hooda S; Yang P; Huang Z; Zeng S; Ramesh AG; Pennycook SJ; Rusydi A; Ariando ; Martin J; Venkatesan T
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38201-38208. PubMed ID: 30362340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction.
    Chen J; Xi J; Wang D; Shuai Z
    J Phys Chem Lett; 2013 May; 4(9):1443-8. PubMed ID: 26282296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Investigation of the Structural, Elastic, Electronic, and Optical Properties of α- and β-SrZrS
    Eya HI; Ntsoenzok E; Dzade NY
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.