These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36120676)

  • 1. SchizoGoogLeNet: The GoogLeNet-Based Deep Feature Extraction Design for Automatic Detection of Schizophrenia.
    Siuly S; Li Y; Wen P; Alcin OF
    Comput Intell Neurosci; 2022; 2022():1992596. PubMed ID: 36120676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring deep residual network based features for automatic schizophrenia detection from EEG.
    Siuly S; Guo Y; Alcin OF; Li Y; Wen P; Wang H
    Phys Eng Sci Med; 2023 Jun; 46(2):561-574. PubMed ID: 36947384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computerized Method for Automatic Detection of Schizophrenia Using EEG Signals.
    Siuly S; Khare SK; Bajaj V; Wang H; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2390-2400. PubMed ID: 32897863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-learned decomposition and classification model for schizophrenia diagnosis.
    Khare SK; Bajaj V
    Comput Methods Programs Biomed; 2021 Nov; 211():106450. PubMed ID: 34619600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals.
    Shalbaf A; Bagherzadeh S; Maghsoudi A
    Phys Eng Sci Med; 2020 Dec; 43(4):1229-1239. PubMed ID: 32926393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
    Phang CR; Noman F; Hussain H; Ting CM; Ombao H
    IEEE J Biomed Health Inform; 2020 May; 24(5):1333-1343. PubMed ID: 31536026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of pattern-based and statistical features for Schizophrenia detection from EEG signals.
    Agarwal M; Singhal A
    Med Eng Phys; 2023 Feb; 112():103949. PubMed ID: 36842772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data.
    Supakar R; Satvaya P; Chakrabarti P
    Comput Biol Med; 2022 Dec; 151(Pt A):106225. PubMed ID: 36306576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SchizoNET: a robust and accurate Margenau-Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals.
    Khare SK; Bajaj V; Acharya UR
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36787641
    [No Abstract]   [Full Text] [Related]  

  • 11. A Computer-Aided Diagnosis System With EEG Based on the P3b Wave During an Auditory Odd-Ball Task in Schizophrenia.
    Santos-Mayo L; San-Jose-Revuelta LM; Arribas JI
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):395-407. PubMed ID: 28113193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epileptic seizure detection in EEG signal using machine learning techniques.
    Jaiswal AK; Banka H
    Australas Phys Eng Sci Med; 2018 Mar; 41(1):81-94. PubMed ID: 29264792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of k-complexes in EEG signals using a multi-domain feature extraction coupled with a least square support vector machine classifier.
    Al-Salman W; Li Y; Wen P
    Neurosci Res; 2021 Nov; 172():26-40. PubMed ID: 33965451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Motor Functions from Electroencephalogram (EEG) Signals Based on an Integrated Method Comprised of Common Spatial Pattern and Wavelet Transform Framework.
    Yahya N; Musa H; Ong ZY; Elamvazuthi I
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia.
    Ieracitano C; Mammone N; Hussain A; Morabito FC
    Neural Netw; 2020 Mar; 123():176-190. PubMed ID: 31884180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A natural evolution optimization based deep learning algorithm for neurological disorder classification.
    Shams M; Sagheer A
    Biomed Mater Eng; 2020; 31(2):73-94. PubMed ID: 32474459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.
    Kim J; Calhoun VD; Shim E; Lee JH
    Neuroimage; 2016 Jan; 124(Pt A):127-146. PubMed ID: 25987366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns.
    Liao SC; Wu CT; Huang HC; Cheng WT; Liu YH
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28613237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
    Jaiswal AK; Banka H
    Biomed Mater Eng; 2017; 28(2):141-157. PubMed ID: 28372267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing feature subset for schizophrenia detection using multichannel EEG signals and rough set theory.
    Srinivasan S; Johnson SD
    Cogn Neurodyn; 2024 Apr; 18(2):431-446. PubMed ID: 38699607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.