These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36120747)
1. Continuous grip force estimation from surface electromyography using generalized regression neural network. Mao H; Fang P; Zheng Y; Tian L; Li X; Wang P; Peng L; Li G Technol Health Care; 2023; 31(2):675-689. PubMed ID: 36120747 [TBL] [Abstract][Full Text] [Related]
2. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression. Smith LH; Kuiken TA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462 [TBL] [Abstract][Full Text] [Related]
3. Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training. Kamavuako EN; Farina D; Yoshida K; Jensen W Ann Biomed Eng; 2012 Mar; 40(3):648-56. PubMed ID: 22006428 [TBL] [Abstract][Full Text] [Related]
4. Closed-Loop Force Control by Biorealistic Hand Prosthesis With Visual and Tactile Sensory Feedback. Zhang Z; Xie A; Chou CH; Liang W; Zhang J; Bi S; Lan N IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2939-2949. PubMed ID: 39110556 [TBL] [Abstract][Full Text] [Related]
5. Optimal strategy of sEMG feature and measurement position for grasp force estimation. Wu C; Cao Q; Fei F; Yang D; Xu B; Zhang G; Zeng H; Song A PLoS One; 2021; 16(3):e0247883. PubMed ID: 33784334 [TBL] [Abstract][Full Text] [Related]
6. sEMG-Based Hand Posture Recognition and Visual Feedback Training for the Forearm Amputee. Kim J; Yang S; Koo B; Lee S; Park S; Kim S; Cho KH; Kim Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298335 [TBL] [Abstract][Full Text] [Related]
7. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements. Pan L; Crouch DL; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training. Nielsen JL; Holmgaard S; Jiang N; Englehart KB; Farina D; Parker PA IEEE Trans Biomed Eng; 2011 Mar; 58(3):681-8. PubMed ID: 20729161 [TBL] [Abstract][Full Text] [Related]
9. Subtle grip force estimation from EMG and muscle stiffness--relationship between muscle character frequency and grip force. Kasuya M; Seki M; Kawamura K; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4116-9. PubMed ID: 22255245 [TBL] [Abstract][Full Text] [Related]
10. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. Muceli S; Farina D IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):371-8. PubMed ID: 22180516 [TBL] [Abstract][Full Text] [Related]
12. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. Jiang N; Vest-Nielsen JL; Muceli S; Farina D J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707 [TBL] [Abstract][Full Text] [Related]
13. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees. Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443 [TBL] [Abstract][Full Text] [Related]
14. Performance of Combined Surface and Intramuscular EMG for Classification of Hand Movements. Rehman MZU; Gillani SO; Waris A; Jochumsen M; Niazi IK; Kamavuako EN Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5220-5223. PubMed ID: 30441515 [TBL] [Abstract][Full Text] [Related]
15. Multi-Grip Classification-Based Prosthesis Control With Two EMG-IMU Sensors. Krasoulis A; Vijayakumar S; Nazarpour K IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):508-518. PubMed ID: 31841413 [TBL] [Abstract][Full Text] [Related]
16. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees. Kim K; Colgate JE IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):798-805. PubMed ID: 22855230 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand. Fang B; Wang C; Sun F; Chen Z; Shan J; Liu H; Ding W; Liang W IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2426-2436. PubMed ID: 35981072 [TBL] [Abstract][Full Text] [Related]
18. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779 [TBL] [Abstract][Full Text] [Related]
19. PCA and deep learning based myoelectric grasping control of a prosthetic hand. Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927 [TBL] [Abstract][Full Text] [Related]
20. Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study. Xu Y; Zhang D; Wang Y; Feng J; Xu W J Neuroeng Rehabil; 2018 May; 15(1):37. PubMed ID: 29747672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]