These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36121213)

  • 41. Hemispherical Cesium Lead Bromide Perovskite Single-Mode Microlasers with High-Quality Factors and Strong Purcell Enhancement.
    Wu CS; Wu SC; Yang BT; Wu ZY; Chou YH; Chen P; Hsu HC
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13556-13564. PubMed ID: 33689258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photo-Activated, Solid-State Introduction of Luminescent Oxygen Defects into Semiconducting Single-Walled Carbon Nanotubes.
    Wieland S; El Yumin AA; Settele S; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(5):2012-2021. PubMed ID: 38352856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.
    Ghosh S; Bachilo SM; Simonette RA; Beckingham KM; Weisman RB
    Science; 2010 Dec; 330(6011):1656-9. PubMed ID: 21109631
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whispering-Gallery Mode Lasing in a Floating GaN Microdisk with a Vertical Slit.
    Zhu G; Li J; Zhang N; Li X; Dai J; Cui Q; Song Q; Xu C; Wang Y
    Sci Rep; 2020 Jan; 10(1):253. PubMed ID: 31937849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescent Single-Walled Carbon Nanotubes for Protein Detection.
    Hendler-Neumark A; Bisker G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dendron-Polymer Hybrids as Tailorable Responsive Coronae of Single-Walled Carbon Nanotubes.
    Wulf V; Slor G; Rathee P; Amir RJ; Bisker G
    ACS Nano; 2021 Dec; 15(12):20539-20549. PubMed ID: 34878763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing.
    Gaviria Rojas WA; Hersam MC
    Adv Mater; 2020 Oct; 32(41):e1905654. PubMed ID: 32255238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon nanotubes/n-silicon hybrid photovoltaic devices.
    Le Borgne V; Gautier LA; Castrucci P; Del Gobbo S; De Crescenzi M; El Khakani MA
    Nanotechnology; 2012 Jun; 23(21):215206. PubMed ID: 22551529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon nanotubes as emerging quantum-light sources.
    He X; Htoon H; Doorn SK; Pernice WHP; Pyatkov F; Krupke R; Jeantet A; Chassagneux Y; Voisin C
    Nat Mater; 2018 Aug; 17(8):663-670. PubMed ID: 29915427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Probing Carrier Dynamics in
    Zheng W; Zorn NF; Bonn M; Zaumseil J; Wang HI
    ACS Nano; 2022 Jun; 16(6):9401-9409. PubMed ID: 35709437
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capacitive and Charge Transfer Effects of Single-Walled Carbon Nanotubes in TiO
    Ansón-Casaos A; Rubio-Muñoz C; Hernández-Ferrer J; Santidrian A; Benito AM; Maser WK
    Chemphyschem; 2019 Mar; 20(6):838-847. PubMed ID: 30768829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioresponsive microlasers with tunable lasing wavelength.
    Yuan Z; Tan X; Gong X; Gong C; Cheng X; Feng S; Fan X; Chen YC
    Nanoscale; 2021 Jan; 13(3):1608-1615. PubMed ID: 33439198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of Single-walled Carbon Nanotube (SWCNT) Composition on Polyfluorene-Based SWCNT Dispersion Selectivity.
    Liang S; Li H; Flavel BS; Adronov A
    Chemistry; 2018 Jul; 24(39):9799-9806. PubMed ID: 29750382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures.
    Xu J; Ma L; Guo P; Zhuang X; Zhu X; Hu W; Duan X; Pan A
    J Am Chem Soc; 2012 Aug; 134(30):12394-7. PubMed ID: 22804485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An electrically driven whispering gallery polariton microlaser.
    Jiang M; Wan P; Tang K; Liu M; Kan C
    Nanoscale; 2021 Mar; 13(10):5448-5459. PubMed ID: 33683235
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes.
    Wang J; Lei T
    Nanoscale; 2022 Jan; 14(4):1096-1106. PubMed ID: 34989744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.
    Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH
    Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide.
    Przypis L; Krzywiecki M; Niidome Y; Aoki H; Shiraki T; Janas D
    Sci Rep; 2020 Nov; 10(1):19877. PubMed ID: 33199740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An explicit formula for optical oscillator strength of excitons in semiconducting single-walled carbon nanotubes: family behavior.
    Choi S; Deslippe J; Capaz RB; Louie SG
    Nano Lett; 2013 Jan; 13(1):54-8. PubMed ID: 23210547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.