These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 3612129)
1. Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. Welsh FA; Sakamoto T; McKee AE; Sims RE J Neurochem; 1987 Sep; 49(3):846-51. PubMed ID: 3612129 [TBL] [Abstract][Full Text] [Related]
2. Regional brain energy metabolism after complete versus incomplete ischemia in the rat in the absence of severe lactic acidosis. Yoshida S; Busto R; Martinez E; Scheinberg P; Ginsberg MD J Cereb Blood Flow Metab; 1985 Dec; 5(4):490-501. PubMed ID: 4055923 [TBL] [Abstract][Full Text] [Related]
3. NADH fluorescence and regional energy metabolites during focal ischemia and reperfusion of rat brain. Welsh FA; Marcy VR; Sims RE J Cereb Blood Flow Metab; 1991 May; 11(3):459-65. PubMed ID: 2016354 [TBL] [Abstract][Full Text] [Related]
4. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. Paschen W; Oláh L; Mies G J Neurochem; 2000 Oct; 75(4):1675-80. PubMed ID: 10987849 [TBL] [Abstract][Full Text] [Related]
6. Effect of different degrees of brain ischemia and tissue lactic acidosis on the short-term recovery of neurophysiologic and metabolic variables. Rehncrona S; Rosén I; Smith ML Exp Neurol; 1985 Mar; 87(3):458-73. PubMed ID: 3972049 [TBL] [Abstract][Full Text] [Related]
7. Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Anderson RE; Tan WK; Martin HS; Meyer FB Stroke; 1999 Jan; 30(1):160-70. PubMed ID: 9880405 [TBL] [Abstract][Full Text] [Related]
8. Hyperglycemic versus normoglycemic stroke: topography of brain metabolites, intracellular pH, and infarct size. Wagner KR; Kleinholz M; de Courten-Myers GM; Myers RE J Cereb Blood Flow Metab; 1992 Mar; 12(2):213-22. PubMed ID: 1548294 [TBL] [Abstract][Full Text] [Related]
9. Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. II. Regional metabolite levels. Welsh FA; Ginsberg MD; Rieder W; Budd WW Stroke; 1980; 11(4):355-63. PubMed ID: 7414663 [TBL] [Abstract][Full Text] [Related]
10. Effect of glucose on recovery of energy metabolism following hypoxia-oligemia in mouse brain: dose-dependence and carbohydrate specificity. Welsh FA; Sims RE; McKee AE J Cereb Blood Flow Metab; 1983 Dec; 3(4):486-92. PubMed ID: 6630318 [TBL] [Abstract][Full Text] [Related]
11. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat. Vannucci RC; Brucklacher RM; Vannucci SJ J Cereb Blood Flow Metab; 1996 Sep; 16(5):1026-33. PubMed ID: 8784248 [TBL] [Abstract][Full Text] [Related]
12. Lactic acidosis and recovery of mitochondrial function following forebrain ischemia in the rat. Hillered L; Smith ML; Siesjö BK J Cereb Blood Flow Metab; 1985 Jun; 5(2):259-66. PubMed ID: 3988825 [TBL] [Abstract][Full Text] [Related]
13. Dexamethasone prevents hypoxia/ischemia-induced reductions in cerebral glucose utilization and high-energy phosphate metabolites in immature brain. Tuor UI; Yager JY; Bascaramurty S; Del Bigio MR J Neurochem; 1997 Nov; 69(5):1954-63. PubMed ID: 9349540 [TBL] [Abstract][Full Text] [Related]
14. Lactate and pH in the brain: association and dissociation in different pathophysiological states. Paschen W; Djuricic B; Mies G; Schmidt-Kastner R; Linn F J Neurochem; 1987 Jan; 48(1):154-9. PubMed ID: 3794696 [TBL] [Abstract][Full Text] [Related]
15. Changes in extra- and intracellular pH in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. Smith ML; von Hanwehr R; Siesjö BK J Cereb Blood Flow Metab; 1986 Oct; 6(5):574-83. PubMed ID: 3760041 [TBL] [Abstract][Full Text] [Related]
16. Cerebral metabolic responses of hyperglycemic immature rats to hypoxia-ischemia. Vannucci RC; Vasta F; Vannucci SJ Pediatr Res; 1987 Jun; 21(6):524-9. PubMed ID: 3601471 [TBL] [Abstract][Full Text] [Related]
17. Factors limiting regeneration of ATP following temporary ischemia in cat brain. Welsh FA; O'Connor MJ; Marcy VR; Spatacco AJ; Johns RL Stroke; 1982; 13(2):234-42. PubMed ID: 7064195 [TBL] [Abstract][Full Text] [Related]
18. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels. Widmer H; Abiko H; Faden AI; James TL; Weinstein PR J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139 [TBL] [Abstract][Full Text] [Related]
19. Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia. Kannurpatti SS; Joshi NB Metab Brain Dis; 1999 Mar; 14(1):33-43. PubMed ID: 10348312 [TBL] [Abstract][Full Text] [Related]
20. Hyperglycemia and the rate of lactic acid accumulation during cerebral ischemia in developing animals: in vivo proton MRS study. Young RS; Petroff OA; Aquila WJ; Cheung A; Gore JC Biol Neonate; 1992; 61(4):235-42. PubMed ID: 1610953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]