These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36121426)
21. Slow (1 Hz) repetitive transcranial magnetic stimulation (rTMS) induces a sustained change in cortical excitability in patients with Parkinson's disease. Filipović SR; Rothwell JC; Bhatia K Clin Neurophysiol; 2010 Jul; 121(7):1129-37. PubMed ID: 20350836 [TBL] [Abstract][Full Text] [Related]
22. Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Ortu E; Ruge D; Deriu F; Rothwell JC Clin Neurophysiol; 2009 Jun; 120(6):1195-203. PubMed ID: 19410505 [TBL] [Abstract][Full Text] [Related]
23. Preliminary findings on the role of high-frequency (5Hz) rTMS stimulation on M1 and pre-SMA regions in Parkinson's disease. Hanoğlu L; Saricaoglu M; Toprak G; Yılmaz NH; Yuluğ B Neurosci Lett; 2020 Apr; 724():134837. PubMed ID: 32057924 [TBL] [Abstract][Full Text] [Related]
24. Movement-related potentials in Parkinson's disease. Motor imagery and movement preparation. Cunnington R; Iansek R; Johnson KA; Bradshaw JL Brain; 1997 Aug; 120 ( Pt 8)():1339-53. PubMed ID: 9278627 [TBL] [Abstract][Full Text] [Related]
25. Single pulse TMS during preparation for lower limb movement: Effect of task predictability on corticospinal excitability. Saumur TM; Mochizuki G Brain Res; 2018 Oct; 1697():105-112. PubMed ID: 30053404 [TBL] [Abstract][Full Text] [Related]
26. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson's disease: effects on bradykinesia of arm and hand. Grüner U; Eggers C; Ameli M; Sarfeld AS; Fink GR; Nowak DA J Neural Transm (Vienna); 2010 Feb; 117(2):207-16. PubMed ID: 20033235 [TBL] [Abstract][Full Text] [Related]
27. Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability. Ataoglu EE; Caglayan HB; Cengiz B Exp Brain Res; 2017 Sep; 235(9):2653-2659. PubMed ID: 28577024 [TBL] [Abstract][Full Text] [Related]
28. Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson's disease. Leon-Sarmiento FE; Rizzo-Sierra CV; Bayona EA; Bayona-Prieto J; Doty RL; Bara-Jimenez W Arch Med Res; 2013 Apr; 44(3):221-8. PubMed ID: 23523962 [TBL] [Abstract][Full Text] [Related]
29. Bradykinesia and rigidity modulated by functional connectivity between the primary motor cortex and globus pallidus in Parkinson's disease. Kinugawa K; Mano T; Fujimura S; Takatani T; Miyasaka T; Sugie K J Neural Transm (Vienna); 2023 Dec; 130(12):1537-1545. PubMed ID: 37612469 [TBL] [Abstract][Full Text] [Related]
30. Nonspecific Inhibition of the Motor System during Response Preparation. Greenhouse I; Sias A; Labruna L; Ivry RB J Neurosci; 2015 Jul; 35(30):10675-84. PubMed ID: 26224853 [TBL] [Abstract][Full Text] [Related]
31. Corticomotor facilitation associated with observation and imagery of hand actions is impaired in Parkinson's disease. Tremblay F; Léonard G; Tremblay L Exp Brain Res; 2008 Feb; 185(2):249-57. PubMed ID: 17926025 [TBL] [Abstract][Full Text] [Related]
32. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion. Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605 [TBL] [Abstract][Full Text] [Related]
33. Premovement inhibition can protect motor actions from interference by response-irrelevant sensory stimulation. McInnes AN; Lipp OV; Tresilian JR; Vallence AM; Marinovic W J Physiol; 2021 Sep; 599(18):4389-4406. PubMed ID: 34339524 [TBL] [Abstract][Full Text] [Related]
34. Effects of high-frequency repetitive transcranial magnetic stimulation on reach-to-grasp performance in individuals with Parkinson's disease: a preliminary study. Thanakamchokchai J; Tretriluxana J; Pakaprot N; Pisarnpong A; Fisher BE Exp Brain Res; 2020 Sep; 238(9):1827-1837. PubMed ID: 32500298 [TBL] [Abstract][Full Text] [Related]
35. Cortical inhibition in attention deficit hyperactivity disorder: new insights from the electroencephalographic response to transcranial magnetic stimulation. Bruckmann S; Hauk D; Roessner V; Resch F; Freitag CM; Kammer T; Ziemann U; Rothenberger A; Weisbrod M; Bender S Brain; 2012 Jul; 135(Pt 7):2215-30. PubMed ID: 22492560 [TBL] [Abstract][Full Text] [Related]
36. Whole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials. Sato D; Yamashiro K; Onishi H; Yasuhiro B; Shimoyama Y; Maruyama A J Neurophysiol; 2015 Feb; 113(3):822-33. PubMed ID: 25376780 [TBL] [Abstract][Full Text] [Related]
37. Muscle-specific movement-phase-dependent modulation of corticospinal excitability during upper-limb motor execution and motor imagery combined with virtual action observation. Suzuki Y; Kaneko N; Sasaki A; Tanaka F; Nakazawa K; Nomura T; Milosevic M Neurosci Lett; 2021 Jun; 755():135907. PubMed ID: 33887382 [TBL] [Abstract][Full Text] [Related]
38. Hypokinesia without decrement distinguishes progressive supranuclear palsy from Parkinson's disease. Ling H; Massey LA; Lees AJ; Brown P; Day BL Brain; 2012 Apr; 135(Pt 4):1141-53. PubMed ID: 22396397 [TBL] [Abstract][Full Text] [Related]
39. Sex differences in Parkinson's disease: A transcranial magnetic stimulation study. Kolmancic K; Perellón-Alfonso R; Pirtosek Z; Rothwell JC; Bhatia K; Kojovic M Mov Disord; 2019 Dec; 34(12):1873-1881. PubMed ID: 31603570 [TBL] [Abstract][Full Text] [Related]
40. Variability of human corticospinal excitability tracks the state of action preparation. Klein-Flügge MC; Nobbs D; Pitcher JB; Bestmann S J Neurosci; 2013 Mar; 33(13):5564-72. PubMed ID: 23536071 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]