BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36121482)

  • 21. The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression.
    Zhan C; Wang S; Sun Y; Dai X; Liu X; Harvey L; McNeil B; Yang Y; Bai Z
    FEMS Yeast Res; 2016 Jun; 16(4):. PubMed ID: 27189360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanol Independent Expression by Pichia Pastoris Employing De-repression Technologies.
    Fischer JE; Hatzl AM; Weninger A; Schmid C; Glieder A
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances on the GAP promoter derived expression system of Pichia pastoris.
    Zhang AL; Luo JX; Zhang TY; Pan YW; Tan YH; Fu CY; Tu FZ
    Mol Biol Rep; 2009 Jul; 36(6):1611-9. PubMed ID: 18781398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media.
    Demir İ; Çalık P
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8381-8397. PubMed ID: 32813064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of proteins in Pichia pastoris.
    Mastropietro G; Aw R; Polizzi KM
    Methods Enzymol; 2021; 660():53-80. PubMed ID: 34742398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving AOX1 promoter efficiency by overexpression of Mit1 transcription factor.
    Haghighi Poodeh S; Ranaei Siadat SO; Arjmand S; Khalifeh Soltani M
    Mol Biol Rep; 2022 Oct; 49(10):9379-9386. PubMed ID: 36002652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic Analysis of
    Zhang C; Ma Y; Miao H; Tang X; Xu B; Wu Q; Mu Y; Huang Z
    Front Microbiol; 2020; 11():463. PubMed ID: 32265887
    [No Abstract]   [Full Text] [Related]  

  • 28. Deregulation of methanol metabolism reverts transcriptional limitations of recombinant Pichia pastoris (Komagataella spp) with multiple expression cassettes under control of the AOX1 promoter.
    Cámara E; Monforte S; Albiol J; Ferrer P
    Biotechnol Bioeng; 2019 Jul; 116(7):1710-1720. PubMed ID: 30712270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-level expression of
    Wang J; Zhang T; Li Y; Li L; Wang Y; Yang B; Wang Y
    3 Biotech; 2019 Jan; 9(1):33. PubMed ID: 30622871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific growth rate governs AOX1 gene expression, affecting the production kinetics of Pichia pastoris (Komagataella phaffii) P
    Garrigós-Martínez J; Nieto-Taype MA; Gasset-Franch A; Montesinos-Seguí JL; Garcia-Ortega X; Valero F
    Microb Cell Fact; 2019 Nov; 18(1):187. PubMed ID: 31675969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis.
    Nie Y; Huang M; Lu J; Qian J; Lin W; Chu J; Zhuang Y; Zhang S
    J Biotechnol; 2014 Oct; 187():124-34. PubMed ID: 25058396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter.
    Resina D; Serrano A; Valero F; Ferrer P
    J Biotechnol; 2004 Apr; 109(1-2):103-13. PubMed ID: 15063618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel bi-directional promoter system allows tunable recombinant protein production in Pichia pastoris.
    Rajamanickam V; Metzger K; Schmid C; Spadiut O
    Microb Cell Fact; 2017 Sep; 16(1):152. PubMed ID: 28903770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter.
    Waterham HR; Digan ME; Koutz PJ; Lair SV; Cregg JM
    Gene; 1997 Feb; 186(1):37-44. PubMed ID: 9047342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into
    Gao J; Xu J; Zuo Y; Ye C; Jiang L; Feng L; Huang L; Xu Z; Lian J
    ACS Synth Biol; 2022 Feb; 11(2):623-633. PubMed ID: 35080853
    [No Abstract]   [Full Text] [Related]  

  • 36. Identification and characterization of P GCW14 : a novel, strong constitutive promoter of Pichia pastoris.
    Liang S; Zou C; Lin Y; Zhang X; Ye Y
    Biotechnol Lett; 2013 Nov; 35(11):1865-71. PubMed ID: 23801118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of two distinct alcohol oxidase promoters in the methylotrophic yeast Pichia methanolica.
    Nakagawa T; Inagaki A; Ito T; Fujimura S; Miyaji T; Yurimoto H; Kato N; Sakai Y; Tomizuka N
    Yeast; 2006 Jan; 23(1):15-22. PubMed ID: 16411161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recombinant protein production in Pichia pastoris: from transcriptionally redesigned strains to bioprocess optimization and metabolic modelling.
    Ergün BG; Berrios J; Binay B; Fickers P
    FEMS Yeast Res; 2021 Dec; 21(7):. PubMed ID: 34755853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris.
    Tschopp JF; Brust PF; Cregg JM; Stillman CA; Gingeras TR
    Nucleic Acids Res; 1987 May; 15(9):3859-76. PubMed ID: 3108861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Pichia pastoris for myo-inositol production by dynamic regulation of central metabolism.
    Zhang Q; Wang X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Su X; Huang H; Yao B; Bai Y; Zhang J
    Microb Cell Fact; 2022 Jun; 21(1):112. PubMed ID: 35659241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.