These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36121515)

  • 1. Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics.
    Sartori L; Pereira M; Oliva S
    Bull Math Biol; 2022 Sep; 84(11):124. PubMed ID: 36121515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil.
    Luz PM; Codeço CT; Massad E; Struchiner CJ
    Mem Inst Oswaldo Cruz; 2003 Oct; 98(7):871-8. PubMed ID: 14765541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of large-scale deployment of
    Durovni B; Saraceni V; Eppinghaus A; Riback TIS; Moreira LA; Jewell NP; Dufault SM; O'Neill SL; Simmons CP; Tanamas SK; Anders KL
    F1000Res; 2019; 8():1328. PubMed ID: 33447371
    [No Abstract]   [Full Text] [Related]  

  • 6. Risk Assessment of Dengue Transmission in Bangladesh Using a Spatiotemporal Network Model and Climate Data.
    Riad MH; Cohnstaedt LW; Scoglio CM
    Am J Trop Med Hyg; 2021 Jan; 104(4):1444-1455. PubMed ID: 33534755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of time series and mechanistic models of vector-borne diseases.
    Vyhmeister E; Provan G; Doyle B; Bourke B; Castane GG; Reyes-Bozo L
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100478. PubMed ID: 35691636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State estimators for some epidemiological systems.
    Iggidr A; Souza MO
    J Math Biol; 2019 Jan; 78(1-2):225-256. PubMed ID: 30032315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spatial and temporal scales of local dengue virus transmission in natural settings: a retrospective analysis.
    Sedda L; Vilela APP; Aguiar ERGR; Gaspar CHP; Gonçalves ANA; Olmo RP; Silva ATS; de Cássia da Silveira L; Eiras ÁE; Drumond BP; Kroon EG; Marques JT
    Parasit Vectors; 2018 Feb; 11(1):79. PubMed ID: 29394906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial-temporal diffusion of dengue in the municipality of Rio de Janeiro, Brazil, 2000-2013.
    Xavier DR; Magalhães MA; Gracie R; Reis IC; Matos VP; Barcellos C
    Cad Saude Publica; 2017 Mar; 33(2):e00186615. PubMed ID: 28380130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use.
    Aldila D; Seno H
    Bull Math Biol; 2019 Dec; 81(12):4977-5008. PubMed ID: 31595380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of dengue disease with human and vector mobility.
    Enduri MK; Jolad S
    Spat Spatiotemporal Epidemiol; 2018 Jun; 25():57-66. PubMed ID: 29751893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ross-Macdonald models: Which one should we use?
    Simoy MI; Aparicio JP
    Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Lancet Commission on dengue and other Aedes-transmitted viral diseases.
    Wilder-Smith A; Lindsay SW; Scott TW; Ooi EE; Gubler DJ; Das P
    Lancet; 2020 Jun; 395(10241):1890-1891. PubMed ID: 32563358
    [No Abstract]   [Full Text] [Related]  

  • 18. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management of insecticides for use in disease vector control: Lessons from six countries in Asia and the Middle East.
    van den Berg H; Velayudhan R; Yadav RS
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009358. PubMed ID: 33930033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting re-emergence times of dengue epidemics at low reproductive numbers: DENV1 in Rio de Janeiro, 1986-1990.
    Subramanian R; Romeo-Aznar V; Ionides E; Codeço CT; Pascual M
    J R Soc Interface; 2020 Jun; 17(167):20200273. PubMed ID: 32574544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.