These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 36121740)

  • 21. Advances in Paper-Based Analytical Devices.
    Ozer T; McMahon C; Henry CS
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):85-109. PubMed ID: 31986055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensory materials for microfluidic paper based analytical devices - A review.
    Selvakumar B; Kathiravan A
    Talanta; 2021 Dec; 235():122733. PubMed ID: 34517601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel combination of quick response code and microfluidic paper-based analytical devices for rapid and quantitative detection.
    Wang T; Xu G; Wu W; Wang X; Chen X; Zhou S; You F
    Biomed Microdevices; 2018 Sep; 20(3):79. PubMed ID: 30187186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review.
    Ratajczak K; Stobiecka M
    Carbohydr Polym; 2020 Feb; 229():115463. PubMed ID: 31826408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process.
    Kumawat N; Soman SS; Vijayavenkataraman S; Kumar S
    Lab Chip; 2022 Sep; 22(18):3377-3389. PubMed ID: 35801817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.
    Economou A; Kokkinos C; Prodromidis M
    Lab Chip; 2018 Jun; 18(13):1812-1830. PubMed ID: 29855637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-Organic-Framework-Based Enzymatic Microfluidic Biosensor via Surface Patterning and Biomineralization.
    Mohammad M; Razmjou A; Liang K; Asadnia M; Chen V
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1807-1820. PubMed ID: 30525376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Enclosed Paper Microfluidic Chip as a Sample Preconcentrator Based on Ion Concentration Polarization.
    Liu N; Phan DT; Lew WS
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1392-1399. PubMed ID: 28792905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Facile Method to Fabricate an Enclosed Paper-Based Analytical Device via Double-Sided Patterning for Ionic Contaminant Detection.
    Choi J; Lee EH; Kang SM; Jeong HH
    Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.
    Yamada K; Henares TG; Suzuki K; Citterio D
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24864-75. PubMed ID: 26488371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices.
    Zhou W; Dou M; Timilsina SS; Xu F; Li X
    Lab Chip; 2021 Jul; 21(14):2658-2683. PubMed ID: 34180494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring.
    de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT
    Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hollow microneedle microfluidic paper-based chip for biomolecules rapid sampling and detection in interstitial fluid.
    Cheng J; Huang J; Xiang Q; Dong H
    Anal Chim Acta; 2023 May; 1255():341101. PubMed ID: 37032050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in paper-analytical methods for pharmaceutical analysis.
    Sharma N; Barstis T; Giri B
    Eur J Pharm Sci; 2018 Jan; 111():46-56. PubMed ID: 28943443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms.
    Sher M; Zhuang R; Demirci U; Asghar W
    Expert Rev Mol Diagn; 2017 Apr; 17(4):351-366. PubMed ID: 28103450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.