These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36121740)

  • 41. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Phase Inversion-Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin.
    Liu JD; Du XY; Chen S
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25089-25096. PubMed ID: 34505753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics.
    Punjiya M; Moon CH; Matharu Z; Rezaei Nejad H; Sonkusale S
    Analyst; 2018 Feb; 143(5):1059-1064. PubMed ID: 29410987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent advances in thread-based microfluidics for diagnostic applications.
    Weng X; Kang Y; Guo Q; Peng B; Jiang H
    Biosens Bioelectron; 2019 May; 132():171-185. PubMed ID: 30875629
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms.
    Sher M; Zhuang R; Demirci U; Asghar W
    Expert Rev Mol Diagn; 2017 Apr; 17(4):351-366. PubMed ID: 28103450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emerging applications of paper-based analytical devices for drug analysis: A review.
    Noviana E; Carrão DB; Pratiwi R; Henry CS
    Anal Chim Acta; 2020 Jun; 1116():70-90. PubMed ID: 32389191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics.
    Wang W; Zhao S; Pan T
    Lab Chip; 2009 Apr; 9(8):1133-7. PubMed ID: 19350096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic paper-based analytical devices and electromembrane extraction; Hyphenation of fields towards effective analytical platforms.
    Alidoust M; Yamini Y; Baharfar M
    Anal Chim Acta; 2022 Jul; 1216():339987. PubMed ID: 35691677
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Precision ejection of microfluidic droplets into air with a superhydrophobic outlet.
    Zhang P; Chang KC; Abate AR
    Lab Chip; 2021 Apr; 21(8):1484-1491. PubMed ID: 33656500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations.
    Wang Y; Ye D; Zhu X; Yang Y; Qin C; Chen R; Liao Q
    Langmuir; 2022 Mar; 38(8):2677-2685. PubMed ID: 35168321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid, Simple, and Inexpensive Spatial Patterning of Wettability in Microfluidic Devices for Double Emulsion Generation.
    Liu H; Piper JA; Li M
    Anal Chem; 2021 Aug; 93(31):10955-10965. PubMed ID: 34323465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning.
    Yao K; Li W; Li K; Wu Q; Gu Y; Zhao L; Zhang Y; Gao X
    Macromol Biosci; 2020 Mar; 20(3):e1900395. PubMed ID: 32141708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.