BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36122202)

  • 1. A quantile integral linear model to quantify genetic effects on phenotypic variability.
    Miao J; Lin Y; Wu Y; Zheng B; Schmitz LL; Fletcher JM; Lu Q
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2212959119. PubMed ID: 36122202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
    Marderstein AR; Davenport ER; Kulm S; Van Hout CV; Elemento O; Clark AG
    Am J Hum Genet; 2021 Jan; 108(1):49-67. PubMed ID: 33326753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting genetic effects on phenotype variability to capture gene-by-environment interactions: a systematic method comparison.
    Zhang X; Bell JT
    G3 (Bethesda); 2024 Apr; 14(4):. PubMed ID: 38289865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analyses of variance in blood cell phenotypes provide new insights into complex trait biology and prediction.
    Xiang R; Liu Y; Ben-Eghan C; Ritchie S; Lambert SA; Xu Y; Takeuchi F; Inouye M
    medRxiv; 2024 Apr; ():. PubMed ID: 38699308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank.
    Wang H; Zhang F; Zeng J; Wu Y; Kemper KE; Xue A; Zhang M; Powell JE; Goddard ME; Wray NR; Visscher PM; McRae AF; Yang J
    Sci Adv; 2019 Aug; 5(8):eaaw3538. PubMed ID: 31453325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sibling method for identifying vQTLs.
    Conley D; Johnson R; Domingue B; Dawes C; Boardman J; Siegal ML
    PLoS One; 2018; 13(4):e0194541. PubMed ID: 29617452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A family-based joint test for mean and variance heterogeneity for quantitative traits.
    Cao Y; Maxwell TJ; Wei P
    Ann Hum Genet; 2015 Jan; 79(1):46-56. PubMed ID: 25393880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model.
    Kerin M; Marchini J
    Am J Hum Genet; 2020 Oct; 107(4):698-713. PubMed ID: 32888427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.
    Domingue BW; Kanopka K; Mallard TT; Trejo S; Tucker-Drob EM
    Behav Genet; 2022 Jan; 52(1):56-64. PubMed ID: 34855050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A linear mixed-model approach to study multivariate gene-environment interactions.
    Moore R; Casale FP; Jan Bonder M; Horta D; ; Franke L; Barroso I; Stegle O
    Nat Genet; 2019 Jan; 51(1):180-186. PubMed ID: 30478441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets.
    Di Scipio M; Khan M; Mao S; Chong M; Judge C; Pathan N; Perrot N; Nelson W; Lali R; Di S; Morton R; Petch J; Paré G
    Nat Commun; 2023 Aug; 14(1):5196. PubMed ID: 37626057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrative analysis of genomic and exposomic data for complex traits and phenotypic prediction.
    Zhou X; Lee SH
    Sci Rep; 2021 Nov; 11(1):21495. PubMed ID: 34728654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical strategies to include the X-chromosome in variance heterogeneity analyses: Evidence for trait-specific polygenic variance structure.
    Deng WQ; Mao S; Kalnapenkis A; Esko T; Mägi R; Paré G; Sun L
    Genet Epidemiol; 2019 Oct; 43(7):815-830. PubMed ID: 31332826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide variance quantitative trait locus analysis suggests small interaction effects in blood pressure traits.
    Shi G
    Sci Rep; 2022 Jul; 12(1):12649. PubMed ID: 35879408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying loci affecting trait variability and detecting interactions in genome-wide association studies.
    Young AI; Wauthier FL; Donnelly P
    Nat Genet; 2018 Nov; 50(11):1608-1614. PubMed ID: 30323177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene-Environment Interactions and Gene-Gene Interactions on Two Biological Age Measures: Evidence from Taiwan Biobank Participants.
    Lin WY
    Adv Biol (Weinh); 2024 Apr; ():e2400149. PubMed ID: 38684452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the phenotypic and genomic background of variability based on litter size of Large White pigs.
    Sell-Kubiak E; Knol EF; Lopes M
    Genet Sel Evol; 2022 Jan; 54(1):1. PubMed ID: 34979897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.
    Zhao G; Marceau R; Zhang D; Tzeng JY
    Genetics; 2015 Mar; 199(3):695-710. PubMed ID: 25585620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide Analysis of Dental Caries Variability Reveals Genotype-by-Environment Interactions.
    Zou T; Foxman B; McNeil DW; Weinberg SM; Marazita ML; Shaffer JR
    Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36981009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci, G×E and G×G for glycemic traits: response to metformin and placebo in the Diabetes Prevention Program (DPP).
    Maxwell TJ; Franks PW; Kahn SE; Knowler WC; Mather KJ; Florez JC; Jablonski KA;
    J Hum Genet; 2022 Aug; 67(8):465-473. PubMed ID: 35260800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.