BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36122210)

  • 1. Unpredictable repeatability in molecular evolution.
    Das SG; Krug J
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2209373119. PubMed ID: 36122210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance.
    Vogwill T; Kojadinovic M; Furió V; MacLean RC
    Mol Biol Evol; 2014 Dec; 31(12):3314-23. PubMed ID: 25228081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation supply and the repeatability of selection for antibiotic resistance.
    van Dijk T; Hwang S; Krug J; de Visser JAGM; Zwart MP
    Phys Biol; 2017 Aug; 14(5):055005. PubMed ID: 28699625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing evolutionary repeatability: neutral and double changes and the predictability of evolutionary adaptation.
    Roy SW
    PLoS One; 2009; 4(2):e4500. PubMed ID: 19234610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of selection environment on the probability of parallel evolution.
    Bailey SF; Rodrigue N; Kassen R
    Mol Biol Evol; 2015 Jun; 32(6):1436-48. PubMed ID: 25761765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The probability of parallel evolution.
    Orr HA
    Evolution; 2005 Jan; 59(1):216-20. PubMed ID: 15792240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the adaptive potential of an antibiotic resistance enzyme.
    Schenk MF; Szendro IG; Krug J; de Visser JA
    PLoS Genet; 2012 Jun; 8(6):e1002783. PubMed ID: 22761587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escaping an evolutionary lobster trap: drug resistance and compensatory mutation in a fluctuating environment.
    Tanaka MM; Valckenborgh F
    Evolution; 2011 May; 65(5):1376-87. PubMed ID: 21521192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of bacterial adaptation.
    Lai HY; Cooper TF
    Biochem Soc Trans; 2021 Apr; 49(2):945-951. PubMed ID: 33843990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributions of beneficial fitness effects in RNA.
    Cowperthwaite MC; Bull JJ; Meyers LA
    Genetics; 2005 Aug; 170(4):1449-57. PubMed ID: 15944361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance.
    Palmer AC; Kishony R
    Nat Rev Genet; 2013 Apr; 14(4):243-8. PubMed ID: 23419278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical fitness landscapes and the predictability of evolution.
    de Visser JA; Krug J
    Nat Rev Genet; 2014 Jul; 15(7):480-90. PubMed ID: 24913663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with
    Card KJ; Thomas MD; Graves JL; Barrick JE; Lenski RE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33441451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of genotype on rates of substitution during experimental evolution.
    Wong A; Seguin K
    Evolution; 2015 Jul; 69(7):1772-85. PubMed ID: 26102355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mathematics of random mutation and natural selection for multiple simultaneous selection pressures and the evolution of antimicrobial drug resistance.
    Kleinman A
    Stat Med; 2016 Dec; 35(29):5391-5400. PubMed ID: 27501057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation-Driven Parallel Evolution during Viral Adaptation.
    Sackman AM; McGee LW; Morrison AJ; Pierce J; Anisman J; Hamilton H; Sanderbeck S; Newman C; Rokyta DR
    Mol Biol Evol; 2017 Dec; 34(12):3243-3253. PubMed ID: 29029274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What drives parallel evolution?: How population size and mutational variation contribute to repeated evolution.
    Bailey SF; Blanquart F; Bataillon T; Kassen R
    Bioessays; 2017 Jan; 39(1):1-9. PubMed ID: 27859467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary accessibility of mutational pathways.
    Franke J; Klözer A; de Visser JA; Krug J
    PLoS Comput Biol; 2011 Aug; 7(8):e1002134. PubMed ID: 21876664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.