These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36122219)
1. Abundant phosphorus expected for possible life in Enceladus's ocean. Hao J; Glein CR; Huang F; Yee N; Catling DC; Postberg F; Hillier JK; Hazen RM Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2201388119. PubMed ID: 36122219 [TBL] [Abstract][Full Text] [Related]
2. Detection of phosphates originating from Enceladus's ocean. Postberg F; Sekine Y; Klenner F; Glein CR; Zou Z; Abel B; Furuya K; Hillier JK; Khawaja N; Kempf S; Noelle L; Saito T; Schmidt J; Shibuya T; Srama R; Tan S Nature; 2023 Jun; 618(7965):489-493. PubMed ID: 37316718 [TBL] [Abstract][Full Text] [Related]
3. Origin and Evolution of Enceladus's Tidal Dissipation. Nimmo F; Neveu M; Howett C Space Sci Rev; 2023; 219(7):57. PubMed ID: 37810170 [TBL] [Abstract][Full Text] [Related]
4. Phosphate availability and implications for life on ocean worlds. Randolph-Flagg NG; Ely T; Som SM; Shock EL; German CR; Hoehler TM Nat Commun; 2023 Apr; 14(1):2388. PubMed ID: 37185347 [TBL] [Abstract][Full Text] [Related]
5. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Rau GH; Carroll SA; Bourcier WL; Singleton MJ; Smith MM; Aines RD Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10095-100. PubMed ID: 23729814 [TBL] [Abstract][Full Text] [Related]
6. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. Adcock CT; Hausrath EM Astrobiology; 2015 Dec; 15(12):1060-75. PubMed ID: 26684505 [TBL] [Abstract][Full Text] [Related]
7. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Stockdale A; Krom MD; Mortimer RJ; Benning LG; Carslaw KS; Herbert RJ; Shi Z; Myriokefalitakis S; Kanakidou M; Nenes A Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14639-14644. PubMed ID: 27930294 [TBL] [Abstract][Full Text] [Related]
8. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Waite JH; Glein CR; Perryman RS; Teolis BD; Magee BA; Miller G; Grimes J; Perry ME; Miller KE; Bouquet A; Lunine JI; Brockwell T; Bolton SJ Science; 2017 Apr; 356(6334):155-159. PubMed ID: 28408597 [TBL] [Abstract][Full Text] [Related]
9. A hybrid model of the CO2 geochemical cycle and its application to large impact events. Kasting JF; Richardson SM; Pollack JB; Toon OB Am J Sci; 1986 May; 286(5):361-89. PubMed ID: 11542044 [TBL] [Abstract][Full Text] [Related]
10. Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia. Watson AJ; Lenton TM; Mills BJW Philos Trans A Math Phys Eng Sci; 2017 Sep; 375(2102):. PubMed ID: 28784709 [TBL] [Abstract][Full Text] [Related]
11. Inefficient Water Degassing Inhibits Ocean Formation on Rocky Planets: An Insight from Self-Consistent Mantle Degassing Models. Miyazaki Y; Korenaga J Astrobiology; 2022 Jun; 22(6):713-734. PubMed ID: 35235378 [TBL] [Abstract][Full Text] [Related]
12. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite. Robbins LL; Wynn JG; Lisle JT; Yates KK; Knorr PO; Byrne RH; Liu X; Patsavas MC; Azetsu-Scott K; Takahashi T PLoS One; 2013; 8(9):e73796. PubMed ID: 24040074 [TBL] [Abstract][Full Text] [Related]
13. High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Sekine Y; Shibuya T; Postberg F; Hsu HW; Suzuki K; Masaki Y; Kuwatani T; Mori M; Hong PK; Yoshizaki M; Tachibana S; Sirono SI Nat Commun; 2015 Oct; 6():8604. PubMed ID: 26506464 [TBL] [Abstract][Full Text] [Related]
14. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Postberg F; Kempf S; Schmidt J; Brilliantov N; Beinsen A; Abel B; Buck U; Srama R Nature; 2009 Jun; 459(7250):1098-101. PubMed ID: 19553992 [TBL] [Abstract][Full Text] [Related]
15. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Blake RE; Chang SJ; Lepland A Nature; 2010 Apr; 464(7291):1029-32. PubMed ID: 20393560 [TBL] [Abstract][Full Text] [Related]
16. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Beukes NJ; Klein C; Kaufman AJ; Hayes JM Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478 [TBL] [Abstract][Full Text] [Related]
18. Microbial Abundance and Diversity in Subsurface Lower Oceanic Crust at Atlantis Bank, Southwest Indian Ridge. Wee SY; Edgcomb VP; Beaudoin D; Yvon-Lewis S; Sylvan JB Appl Environ Microbiol; 2021 Oct; 87(22):e0151921. PubMed ID: 34469194 [TBL] [Abstract][Full Text] [Related]
19. A carbonate-rich lake solution to the phosphate problem of the origin of life. Toner JD; Catling DC Proc Natl Acad Sci U S A; 2020 Jan; 117(2):883-888. PubMed ID: 31888981 [TBL] [Abstract][Full Text] [Related]