These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36122244)

  • 1. Socially situated artificial intelligence enables learning from human interaction.
    Krishna R; Lee D; Fei-Fei L; Bernstein MS
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2115730119. PubMed ID: 36122244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Social Robots: Attribution of Intentional Agency to Artificial and Biological Bodies.
    Ziemke T
    Artif Life; 2023 Aug; 29(3):351-366. PubMed ID: 36943757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Socially intelligent machines that learn from humans and help humans learn.
    Gweon H; Fan J; Kim B
    Philos Trans A Math Phys Eng Sci; 2023 Jul; 381(2251):20220048. PubMed ID: 37271177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Humanitarian health computing using artificial intelligence and social media: A narrative literature review.
    Fernandez-Luque L; Imran M
    Int J Med Inform; 2018 Jun; 114():136-142. PubMed ID: 29395987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-Computer Interaction Problem in Learning: Could the Key Be Hidden Somewhere Between Social Interaction and Development of Tools?
    Yıldız T
    Integr Psychol Behav Sci; 2019 Sep; 53(3):541-557. PubMed ID: 30826986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explaining Aha! moments in artificial agents through IKE-XAI: Implicit Knowledge Extraction for eXplainable AI.
    Chraibi Kaadoud I; Bennetot A; Mawhin B; Charisi V; Díaz-Rodríguez N
    Neural Netw; 2022 Nov; 155():95-118. PubMed ID: 36049396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning offline: memory replay in biological and artificial reinforcement learning.
    Roscow EL; Chua R; Costa RP; Jones MW; Lepora N
    Trends Neurosci; 2021 Oct; 44(10):808-821. PubMed ID: 34481635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supporting Artificial Social Intelligence With Theory of Mind.
    Williams J; Fiore SM; Jentsch F
    Front Artif Intell; 2022; 5():750763. PubMed ID: 35295867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Situated language learning via interactive narratives.
    Ammanabrolu P; Riedl MO
    Patterns (N Y); 2021 Sep; 2(9):100316. PubMed ID: 34553167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human-level performance in 3D multiplayer games with population-based reinforcement learning.
    Jaderberg M; Czarnecki WM; Dunning I; Marris L; Lever G; Castañeda AG; Beattie C; Rabinowitz NC; Morcos AS; Ruderman A; Sonnerat N; Green T; Deason L; Leibo JZ; Silver D; Hassabis D; Kavukcuoglu K; Graepel T
    Science; 2019 May; 364(6443):859-865. PubMed ID: 31147514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multitask Learning and Reinforcement Learning for Personalized Dialog Generation: An Empirical Study.
    Yang M; Huang W; Tu W; Qu Q; Shen Y; Lei K
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):49-62. PubMed ID: 32149657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning, reinforcement learning, and world models.
    Matsuo Y; LeCun Y; Sahani M; Precup D; Silver D; Sugiyama M; Uchibe E; Morimoto J
    Neural Netw; 2022 Aug; 152():267-275. PubMed ID: 35569196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Learning: Full Glass or Empty - Depends Who You Ask.
    Bakermans JJW; Muller TH; Behrens TEJ
    Curr Biol; 2020 Apr; 30(7):R321-R324. PubMed ID: 32259508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Social Concepts Simplify Complex Reinforcement Learning.
    Hackel LM; Kalkstein DA
    Psychol Sci; 2023 Sep; 34(9):968-983. PubMed ID: 37470669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture.
    Mitsopoulos K; Somers S; Schooler J; Lebiere C; Pirolli P; Thomson R
    Top Cogn Sci; 2022 Oct; 14(4):756-779. PubMed ID: 34467649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.