These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 36122302)
1. Automatic generation of retinal optical coherence tomography images based on generative adversarial networks. Zhao M; Lu Z; Zhu S; Wang X; Feng J Med Phys; 2022 Nov; 49(11):7357-7367. PubMed ID: 36122302 [TBL] [Abstract][Full Text] [Related]
2. Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks. Liu S; Hu W; Xu F; Chen W; Liu J; Yu X; Wang Z; Li Z; Li Z; Yang X; Song B; Wang S; Wang K; Wang X; Hong J; Zhang L; Li J Photodiagnosis Photodyn Ther; 2023 Mar; 41():103272. PubMed ID: 36632873 [TBL] [Abstract][Full Text] [Related]
3. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders. Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202 [TBL] [Abstract][Full Text] [Related]
4. Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation. Abdelmotaal H; Sharaf M; Soliman W; Wasfi E; Kedwany SM BMC Ophthalmol; 2022 Sep; 22(1):355. PubMed ID: 36050661 [TBL] [Abstract][Full Text] [Related]
5. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images. Sun Z; Sun Y J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697 [TBL] [Abstract][Full Text] [Related]
6. A novel approach for automatic classification of macular degeneration OCT images. Pang S; Zou B; Xiao X; Peng Q; Yan J; Zhang W; Yue K Sci Rep; 2024 Aug; 14(1):19285. PubMed ID: 39164445 [TBL] [Abstract][Full Text] [Related]
7. Development and Clinical Validation of Semi-Supervised Generative Adversarial Networks for Detection of Retinal Disorders in Optical Coherence Tomography Images Using Small Dataset. Zheng C; Ye H; Yang J; Fei P; Qiu Y; Xie X; Wang Z; Chen J; Zhao P Asia Pac J Ophthalmol (Phila); 2022 May; 11(3):219-226. PubMed ID: 35342179 [TBL] [Abstract][Full Text] [Related]
8. A new intelligent system based deep learning to detect DME and AMD in OCT images. Gueddena Y; Aboudi N; Zgolli H; Mabrouk S; Sidibe D; Tabia H; Khlifa N Int Ophthalmol; 2024 Apr; 44(1):191. PubMed ID: 38653842 [TBL] [Abstract][Full Text] [Related]
9. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
10. Structurally constrained and pathology-aware convolutional transformer generative adversarial network for virtual histology staining of human coronary optical coherence tomography images. Li X; Liu H; Song X; Marboe CC; Brott BC; Litovsky SH; Gan Y J Biomed Opt; 2024 Mar; 29(3):036004. PubMed ID: 38532927 [TBL] [Abstract][Full Text] [Related]
11. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
12. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism. Sun Y; Zhang H; Yao X J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the Short-Term Therapeutic Effect of Anti-VEGF Therapy for Diabetic Macular Edema Using a Generative Adversarial Network with OCT Images. Xu F; Liu S; Xiang Y; Hong J; Wang J; Shao Z; Zhang R; Zhao W; Yu X; Li Z; Yang X; Geng Y; Xiao C; Wei M; Zhai W; Zhang Y; Wang S; Li J J Clin Med; 2022 May; 11(10):. PubMed ID: 35629007 [TBL] [Abstract][Full Text] [Related]
14. RD-OCT net: hybrid learning system for automated diagnosis of macular diseases from OCT retinal images. Prabha AJ; Venkatesan C; Fathimal MS; Nithiyanantham KK; Kirubha SPA Biomed Phys Eng Express; 2024 Feb; 10(2):. PubMed ID: 38335542 [TBL] [Abstract][Full Text] [Related]
15. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926 [TBL] [Abstract][Full Text] [Related]
17. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier. Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864 [TBL] [Abstract][Full Text] [Related]
18. Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images. Asif S; Amjad K; Qurrat-Ul-Ain Interdiscip Sci; 2022 Dec; 14(4):906-916. PubMed ID: 35767116 [TBL] [Abstract][Full Text] [Related]
19. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images. A P S; Kar S; S G; Gopi VP; Palanisamy P Comput Methods Programs Biomed; 2021 Mar; 200():105877. PubMed ID: 33339630 [TBL] [Abstract][Full Text] [Related]
20. Detection of Diabetic Macular Edema in Optical Coherence Tomography Image Using an Improved Level Set Algorithm. Wang Z; Zhang W; Sun Y; Yao M; Yan B Biomed Res Int; 2020; 2020():6974215. PubMed ID: 32420362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]