These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 36122496)
1. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Gracka M; Lima R; Miranda JM; Student S; Melka B; Ostrowski Z Comput Methods Programs Biomed; 2022 Nov; 226():107117. PubMed ID: 36122496 [TBL] [Abstract][Full Text] [Related]
2. Numerical Model Validation of the Blood Flow through a Microchannel Hyperbolic Contraction. Barbosa F; Dueñas-Pamplona J; Abreu CS; Oliveira MSN; Lima RA Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893323 [TBL] [Abstract][Full Text] [Related]
3. Hemolysis prediction in bio-microfluidic applications using resolved CFD-DEM simulations. Porcaro C; Saeedipour M Comput Methods Programs Biomed; 2023 Apr; 231():107400. PubMed ID: 36774792 [TBL] [Abstract][Full Text] [Related]
5. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
6. Particulate Blood Analogues Reproducing the Erythrocytes Cell-Free Layer in a Microfluidic Device Containing a Hyperbolic Contraction. Calejo J; Pinho D; Galindo-Rosales FJ; Lima R; Campo-Deaño L Micromachines (Basel); 2015 Dec; 7(1):. PubMed ID: 30407376 [TBL] [Abstract][Full Text] [Related]
7. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel. Yaginuma T; Oliveira MS; Lima R; Ishikawa T; Yamaguchi T Biomicrofluidics; 2013; 7(5):54110. PubMed ID: 24404073 [TBL] [Abstract][Full Text] [Related]
8. Enhancing cell-free layer thickness by bypass channels in a wall. Saadatmand M; Shimogonya Y; Yamaguchi T; Ishikawa T J Biomech; 2016 Jul; 49(11):2299-2305. PubMed ID: 26803337 [TBL] [Abstract][Full Text] [Related]
9. Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography. Lauri J; Bykov A; Fabritius T J Biomed Opt; 2016 Apr; 21(4):40501. PubMed ID: 27071412 [TBL] [Abstract][Full Text] [Related]
10. Hemodynamic Characteristics of a Tortuous Microvessel Using High-Fidelity Red Blood Cell Resolved Simulations. Hossain MMN; Hu NW; Kazempour A; Murfee WL; Balogh P Microcirculation; 2024 Oct; 31(7):e12875. PubMed ID: 38989907 [TBL] [Abstract][Full Text] [Related]
11. Effects of red blood cell aggregation on the blood flow in a symmetrical stenosed microvessel. Xiao LL; Lin CS; Chen S; Liu Y; Fu BM; Yan WW Biomech Model Mechanobiol; 2020 Feb; 19(1):159-171. PubMed ID: 31297646 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation of haemodynamics in a helical-type artery bypass graft using non-Newtonian multiphase model. Wen J; Liu K; Khoshmanesh K; Jiang W; Zheng T Comput Methods Biomech Biomed Engin; 2015; 18(7):760-8. PubMed ID: 24156553 [TBL] [Abstract][Full Text] [Related]
13. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow. Wang T; Xing Z Biomed Res Int; 2018; 2018():8065252. PubMed ID: 29850568 [TBL] [Abstract][Full Text] [Related]
14. A cell-and-plasma numerical model reveals hemodynamic stress and flow adaptation in zebrafish microvessels after morphological alteration. Maung Ye SS; Phng LK PLoS Comput Biol; 2023 Dec; 19(12):e1011665. PubMed ID: 38048371 [TBL] [Abstract][Full Text] [Related]
15. Design of a microfluidic system for red blood cell aggregation investigation. Mehri R; Mavriplis C; Fenech M J Biomech Eng; 2014 Jun; 136(6):064501. PubMed ID: 24700377 [TBL] [Abstract][Full Text] [Related]
16. Stochastic parcel tracking in an Euler-Lagrange compartment model for fast simulation of fermentation processes. Haringa C; Tang W; Noorman HJ Biotechnol Bioeng; 2022 Jul; 119(7):1849-1860. PubMed ID: 35352339 [TBL] [Abstract][Full Text] [Related]
17. Mesoscale simulation of blood flow in small vessels. Bagchi P Biophys J; 2007 Mar; 92(6):1858-77. PubMed ID: 17208982 [TBL] [Abstract][Full Text] [Related]
18. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells. Wei Y; Mu L; Tang Y; Shen Z; He Y Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161 [TBL] [Abstract][Full Text] [Related]
19. Semi-automated red blood cell core detection in blood micro-flow. Fenech M; Le AV; Salame M; Gliah O; Chartrand C Microvasc Res; 2023 May; 147():104496. PubMed ID: 36739962 [TBL] [Abstract][Full Text] [Related]