These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36122731)
21. Coastal wetland conversion to aquaculture pond reduced soil P availability by altering P fractions, phosphatase activity, and associated microbial properties. Hu M; Sardans J; Le Y; Yan R; Peñuelas J Chemosphere; 2023 Jan; 311(Pt 1):137083. PubMed ID: 36334732 [TBL] [Abstract][Full Text] [Related]
22. Land-use intensification exerts a greater influence on soil microbial communities than seasonal variations in the Taihu Lake region, China. Xiong R; Qian D; Qiu Z; Hou Y; Li Q; Shen W Sci Total Environ; 2024 Sep; 943():173630. PubMed ID: 38823709 [TBL] [Abstract][Full Text] [Related]
23. [Effects of grazing on the composition of soil animals and their decomposition function to Stipa grandis litter in Inner Mongolia typical steppe, China.]. Yang ZM; Hasitamier ; Liu XM Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2864-2874. PubMed ID: 29732849 [TBL] [Abstract][Full Text] [Related]
24. The amounts and ratio of nitrogen and phosphorus addition drive the rate of litter decomposition in a subtropical forest. Tie L; Hu J; Peñuelas J; Sardans J; Wei S; Liu X; Zhou S; Huang C Sci Total Environ; 2022 Aug; 833():155163. PubMed ID: 35413342 [TBL] [Abstract][Full Text] [Related]
25. [Effects of litter decomposition on contents and three-dimensional fluorescence spectroscopy characteristics of soil labile organic carbon in coastal wetlands of Jiaozhou Bay, China]. Sun XL; Kong FL; Li Y; Di LY; Xi M Ying Yong Sheng Tai Xue Bao; 2019 Feb; 30(2):563-572. PubMed ID: 30915809 [TBL] [Abstract][Full Text] [Related]
26. Pond-bottom decomposition of leaf litters canopied by free-floating vegetation. Zhang YL; Li HB; Xu L; Pan X; Li WB; Liu J; Jiang YP; Song YB; Dong M Environ Sci Pollut Res Int; 2019 Mar; 26(8):8248-8256. PubMed ID: 30701469 [TBL] [Abstract][Full Text] [Related]
27. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. Yarwood SA FEMS Microbiol Ecol; 2018 Nov; 94(11):. PubMed ID: 30169564 [TBL] [Abstract][Full Text] [Related]
28. Influence of fungi and bag mesh size on litter decomposition and water quality. Zhai J; Cong L; Yan G; Wu Y; Liu J; Wang Y; Zhang Z; Zhang M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18304-18315. PubMed ID: 31041710 [TBL] [Abstract][Full Text] [Related]
29. The influence of increased precipitation and nitrogen deposition on the litter decomposition and soil microbial community structure in a semiarid grassland. Li Z; Peng Q; Dong Y; Guo Y Sci Total Environ; 2022 Oct; 844():157115. PubMed ID: 35787902 [TBL] [Abstract][Full Text] [Related]
30. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Hernández DL; Hobbie SE Oecologia; 2008 Dec; 158(3):535-43. PubMed ID: 18850116 [TBL] [Abstract][Full Text] [Related]
31. A review of factors affecting the soil microbial community structure in wetlands. Wang C; Yu J; Zhang J; Zhu B; Zhao W; Wang Z; Yang T; Yu C Environ Sci Pollut Res Int; 2024 Jul; 31(34):46760-46768. PubMed ID: 38967845 [TBL] [Abstract][Full Text] [Related]
32. [Effects of simulated wetland water change on the decomposition and nitrogen dynamics of Calamagrostis angustifolia litter]. Sun ZG; Liu JS; Yu JB; Qin SJ Huan Jing Ke Xue; 2008 Aug; 29(8):2081-93. PubMed ID: 18839554 [TBL] [Abstract][Full Text] [Related]
33. The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change. Yang R; Dong J; Li C; Wang L; Quan Q; Liu J PLoS One; 2021; 16(5):e0250880. PubMed ID: 33939720 [TBL] [Abstract][Full Text] [Related]
34. Long-term litter decomposition controlled by manganese redox cycling. Keiluweit M; Nico P; Harmon ME; Mao J; Pett-Ridge J; Kleber M Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5253-60. PubMed ID: 26372954 [TBL] [Abstract][Full Text] [Related]
35. Tree phylogeny predicts more than litter chemical components in explaining enzyme activities in forest leaf litter decomposition. Du S; Wang L; Yang H; Zhang Q Microbiol Res; 2024 Jun; 283():127658. PubMed ID: 38457993 [TBL] [Abstract][Full Text] [Related]
36. Phragmites australis meets Suaeda salsa on the "red beach": Effects of an ecosystem engineer on salt-marsh litter decomposition. Cui L; Pan X; Li W; Zhang X; Liu G; Song YB; Yu FH; Prinzing A; Cornelissen JHC Sci Total Environ; 2019 Nov; 693():133477. PubMed ID: 31362230 [TBL] [Abstract][Full Text] [Related]
37. Leaf litter decomposition and its drivers differ between an invasive and a native plant: Management implications. Cheng C; Liu Z; Zhang Y; He Q; Li B; Wu J Ecol Appl; 2024 Jan; 34(1):e2739. PubMed ID: 36102204 [TBL] [Abstract][Full Text] [Related]
38. Climate and litter traits affect the response of litter decomposition to soil fauna. Wang D; Xie W; Yuan F; Deng C; Qin R; Zhou H BMC Res Notes; 2023 Nov; 16(1):321. PubMed ID: 37941065 [TBL] [Abstract][Full Text] [Related]
39. [The relative contributions of plant quality, simulated rising temperature, and habitat to litter decomposition.]. Wang H; Yan PF; Zhan PF; Zhang XN; Liu ZY; Guo YJ; Xiao R Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):474-482. PubMed ID: 29692061 [TBL] [Abstract][Full Text] [Related]
40. Large herbivore grazing accelerates litter decomposition in terrestrial ecosystems. Jiang A; Mipam TD; Jing L; Li Z; Li T; Liu J; Tian L Sci Total Environ; 2024 Apr; 922():171288. PubMed ID: 38423309 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]