BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 36122792)

  • 1. Ginseng polysaccharide attenuates red blood cells oxidative stress injury by regulating red blood cells glycolysis and liver gluconeogenesis.
    Wang S; Zhao Y; Yang J; Liu S; Ni W; Bai X; Yang Z; Zhao D; Liu M
    J Ethnopharmacol; 2023 Jan; 300():115716. PubMed ID: 36122792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ginseng total saponin improves red blood cell oxidative stress injury by regulating tyrosine phosphorylation and glycolysis in red blood cells.
    Zhao Y; Cui Y; Ni W; Yu S; Pan D; Liu S; Jia Z; Gao Y; Zhao D; Liu M; Wang S
    Phytomedicine; 2024 Jul; 130():155785. PubMed ID: 38823342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant Activity of Quercetin in a H
    Remigante A; Spinelli S; Straface E; Gambardella L; Caruso D; Falliti G; Dossena S; Marino A; Morabito R
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin Protects Band 3 Protein in Human Erythrocytes against H
    Morabito R; Remigante A; Marino A
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31357737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semen raphani weakened the action of ginseng under chronic fatigue condition.
    Wang Y; Ma C; Dou D
    J Ethnopharmacol; 2022 Sep; 295():115352. PubMed ID: 35598795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells.
    Akide-Ndunge OB; Tambini E; Giribaldi G; McMillan PJ; Müller S; Arese P; Turrini F
    Malar J; 2009 May; 8():113. PubMed ID: 19480682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Panax ginseng Fraction F3 Extracted by Supercritical Carbon Dioxide Protects against Oxidative Stress in ARPE-19 Cells.
    Yang CC; Chen CY; Wu CC; Koo M; Yu ZR; Wang BJ
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27754362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure characterization and anti-fatigue activity of an acidic polysaccharide from Panax ginseng C. A. Meyer.
    Yu Y; Nie J; Zhao B; Tan J; Lv C; Lu J
    J Ethnopharmacol; 2023 Jan; 301():115831. PubMed ID: 36244638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster of erythrocyte band 3: a potential molecular target of exhaustive exercise-induced dysfunction of erythrocyte deformability.
    Xiong Y; Li Y; Xiong Y; Zhao Y; Tang F; Wang X
    Can J Physiol Pharmacol; 2013 Dec; 91(12):1127-34. PubMed ID: 24289085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulated Recycling Process but Not De Novo Synthesis of Glutathione Limits Antioxidant Capacity of Erythrocytes in Hypoxia.
    Wang Y; Zhao N; Xiong Y; Zhang J; Zhao D; Yin Y; Song L; Yin Y; Wang J; Luan X; Xiong Y
    Oxid Med Cell Longev; 2020; 2020():7834252. PubMed ID: 32963701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centaurium erythraea methanol extract protects red blood cells from oxidative damage in streptozotocin-induced diabetic rats.
    Đorđević M; Mihailović M; Arambašić Jovanović J; Grdović N; Uskoković A; Tolić A; Sinadinović M; Rajić J; Mišić D; Šiler B; Poznanović G; Vidaković M; Dinić S
    J Ethnopharmacol; 2017 Apr; 202():172-183. PubMed ID: 28323046
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Hu X; Mu L; Zhu L; Chang X; Nie L; Wang L; Li G
    Mol Med Rep; 2021 Sep; 24(3):. PubMed ID: 34278476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury Chloride Affects Band 3 Protein-Mediated Anionic Transport in Red Blood Cells: Role of Oxidative Stress and Protective Effect of Olive Oil Polyphenols.
    Perrone P; Spinelli S; Mantegna G; Notariale R; Straface E; Caruso D; Falliti G; Marino A; Manna C; Remigante A; Morabito R
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resveratrol Promotes Gluconeogenesis by Inhibiting SESN2-mTORC2-AKT Pathway in Calf Hepatocytes.
    Wang G; Qin S; Geng H; Zheng Y; Li R; Xia C; Chen L; Yao J; Deng L
    J Nutr; 2023 Jul; 153(7):1930-1943. PubMed ID: 37182694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ginseng (
    Liu R; Chen QH; Ren JW; Sun B; Cai XX; Li D; Mao RX; Wu X; Li Y
    Nutrients; 2018 Nov; 10(11):. PubMed ID: 30400371
    [No Abstract]   [Full Text] [Related]  

  • 17. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes.
    Li J; Ichikawa T; Jin Y; Hofseth LJ; Nagarkatti P; Nagarkatti M; Windust A; Cui T
    J Ethnopharmacol; 2010 Jul; 130(2):222-30. PubMed ID: 20447451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells.
    Jiang R; Xu XH; Wang K; Yang XZ; Bi YF; Yan Y; Liu JZ; Chen XN; Wang ZZ; Guo XL; Zhao DQ; Sun LW
    J Ethnopharmacol; 2017 Aug; 208():149-156. PubMed ID: 28689798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol-based regulation of glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: a strategy to counteract oxidative stress.
    Rinalducci S; Marrocco C; Zolla L
    Transfusion; 2015 Mar; 55(3):499-506. PubMed ID: 25196942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation on energy metabolism and protection on mitochondria of Panax ginseng polysaccharide.
    Li XT; Chen R; Jin LM; Chen HY
    Am J Chin Med; 2009; 37(6):1139-52. PubMed ID: 19938222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.